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PREFACE.

The beginner in Physics, if he is to be well taught, must

study a text-book which contains concise statements of physical

laws and a systematic development of principles. He must

attend lectures or demonstrations in which the phenomena

are shown, and finally he must enter the laboratory and make

physical measurements.

The present book deals only with the first part of this triple

course of instruction. It differs in certain respects from many

books which have been written for beginners. Descriptions

of the numerous phenomena with which it is necessary for the

student to become acquainted have been largely omitted ; the

assumption being that the study of the text will always be

accompanied by, and indeed be supplementary to, a course of

carefully arranged and fully illustrated lectures. A knowledge

of the elements of the calculus, the natural language of physics,

has been taken for granted, but the degree of mathematical

experience of the undergraduate reader, necessarily limited, has

been kept in view and the various proofs and the demonstra-

tions have been given the simplest possible form.

The concepts of directed and of distributed quantity, which

are no less important to the student of physics than are the

methods of the calculus, are briefly treated in Chapter II. of

Volume I. and in Chapter I. of Volume II., respectively, and

are used upon occasion throughout the text.

The authors have thought it best to face squarely the diffi-

culties of the subject, and they may perhaps be permitted to
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say with Tait:* " He who expects to find this work, elementary

as it is, everywhere easy reading, will be deservedly disap-

pointed. No branch of science is free from real and great

difficulties even in its elements. Any one who thinks otherwise

has either not read at all or has confined his reading to psendo-

science."

What follows the word Law, as used in this text, is in every

case an independent statement of experimental fact. Many

physical laws are the direct result of experiment, others, such as

Newton's Laws of Motion, the Laws of Thermodynamics, etc.,

are in their accepted form more or less indirectly derived from

experiment, and are so comprehensive as to defy complete

experimental verification. The principle that the only proper

discussion of a law is that which is necessary to make its

meaning clear has been closely followed. The theoretical con-

siderations which follow the statement of a number of laws

referring to the same thing, for example the discussion of the

Kinetic theory, which follows the statements of the various

laws of gases, have in every case the object of forming con-

crete pictures of the abstractions contemplated in the laws.

Helmholtzf has long since pointed out the advantages of this

method of treatment.

The work is issued in three small volumes, the first of which

treats of Mechanics and Heat, the second of Electricity and

Magnetism, and the last of Sound and Light. As a matter of

convenience, articles, equations, and figures are numbered con-

secutively throughout the three volumes.

Ithaca, New York, Dec. 3, 1895.

* Tait, Heat, p. viii of the preface.

f
" Es hat grosse Vortheile fiir das sichere Verstandniss solcher Abstrac-

tionen, wenn man sich mbglichst concrete Bilder davon zu machen sucht,

selbst wenn diese manche Voraussetzung hineinbringen die fur das Wesen
der Sache nicht gerade nothwendig ist."— von Helmholtz, Handbuch der

physiologischen Optik.
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THE ELEMENTS OF PHYSICS.

CHAPTER I.

MEASUREMENT OF LENGTH, TIME,, AND MASS.

1. Length : the meter and the yard. — The Meter is defined

as the distance, at the temperature of melting ice,, between the

ends of a platinum bar preserved in the Archives of France.

The centimeter, which in physics is adopted as a fundamental

unit, is one hundredth of a meter. This bar was made by

Borda to be the ten-millionth part of the distance from the

equator to the pole of the earth. The measurements upon

which it was based are now known to be distinctly incorrect,

which fact, together with the fact that copies of the standard

meter can be made with greater accuracy and convenience by

direct comparison with Borda's bar than by comparison with

the earth's quadrant has resulted in the adoption of the above

definition of the meter.

The Yard is defined by act of Parliament as the distance at

62 F. between the transverse lines in two gold plugs in a bronze

bar deposited in the office of the Exchequer in London. The

yard is equal to 0.914383 meter.

2. The measurement of length : scale and vernier.— Lengths

are commonly measured by the use of divided scales. In this

case the length to be measured is determined by counting the

number of whole divisions and estimating the fractions remain-



2 ELEMENTS OF PHYSICS.

ing over. The latter process is sometimes performed by means

of the Vernier, which is a device for the accurate estimation of

fractions of divisions in the use of straight scales and divided

circles. Let 5 in Fig. i be a scale divided to millimeters. An
auxiliary scale, V, (n-i) millimeters long, is divided into n

equal parts. The diagram (Fig. i) is constructed for n=io.

i—

r

i j ,

'

J
J

20

LA
i i r i i r

i
s

Fig. 1.

Let /, equal to - mm., be the fraction to be estimated
;
/' is

I 2
- mm. shorter, f" is - mm. shorter, and so on, so that the ath
7/ n
mark on V is coincident with a mark on the scale. Thus a is

determined. The auxiliary scale, V, is

called a vernier. The ;/ divisions on the

vernier may be made each J — mm., in
J n

which case a is determined by counting

from the other end of the vernier.

3. The cathetometer (Fig. 2) is an instru-

ment for measuring differences in level.

It consists of a vertical scale upon which

is a sliding piece, with clamp, carrying a

telescope accurately leveled by means of

a sensitive spirit level, and a vernier which

plays over the vertical scale. The tele-

scope is sighted at one of the two points

of which the difference in level is required

and the reading of the vernier taken. The

telescope is then sighted at the other point

and the vernier reading again taken. The

difference of these readings is the re-

quired difference in level.
Fig. 2.
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4. For the more precise determination of lengths a variety

of instruments is employed which depend for their action upon

the properties of the screw.

The dividing engine is such an instrument. It consists essen-

tially of an accurate horizontal screw,* having a divided circu-

lar head for estimating fractions of a turn. This screw engages

a nut fastened to a carriage, which carries a reading microscope

and a graving tool, and slides upon a heavy metal bed. The

standard of length is placed upon this platform parallel to the

screw, and the screw is turned until the microscope sights

exactly at one end of it. The screw is then turned, a turns,

until the microscope sights at the other end of the standard.

The bar the length of which is to be determined is put in

place of the standard, the screw is turned until the microscope

sights at one end of the bar and then, b turns, until the micro-

scope sights at the other end of the bar. The length of the

bar is then known to be to the standard as - is to i. In the
a

manufacture of scales a blank bar is put upon the platform,

the screw is turned until the graving tool is conveniently near

one end of the bar and a mark is made; the screw is turned -

turns, and another mark is made, and so on, thus dividing the

bar into nths of the standard length. In use, the dividing

engine must be carefully maintained at a

constant temperature. Where the lengths

to be determined are small, the screw thus

employed is called a micrometer screw.

The micrometer screw is accurately cut

to some definite pitch. It has a divided

circular head and turns in a fixed, close-

fitting nut. The following are two well-

known forms.

(a) The micrometer caliper is a microm-

eter screw mounted as shown in Fig. 3.

See Encyclopedia Britannica, 9th ed., article Screw.

Fig. 3.
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The instrument is so adjusted that the distance d is indicated

directly by the screw, the whole turns upon a fixed scale b, and

the fractions of a turn upon the circular head c.

(b) The spherometer (Fig. 4) is a micrometer screw the nut

of which is carried on a rigid metal tripod so that the screw

may be perpendicular to a

plane upon which the tripod

stands. The screw carries a

conical tip the apex of which

is equidistant from the feet

of the tripod, and these are

equidistant from each other.

The instrument is used for

determining the radii of cur-

vature of spherical surfaces,

for which purpose a reading

is taken when the screw is

just in contact with a plane

surface upon which the in-

strument stands, and again

when it is placed upon the

given spherical surface. From

these readings, the pitch of the screw and the distance between

the feet of the tripod being known, the radius of the surface

is easily calculated.

5. Angle. — Angles are ordinarily specified in degrees, the

degree being the unit upon which trigonometrical tables are

based. It is often more convenient, however, to express angle

in terms of
arc

• The unit angle in this system is called the
radius

Radian, and is the angle of which the arc is equal to the radius.

Measurement of angles. — In many instruments angles are

measured by means of a divided circle. This is placed with its

center at the apex of the angle, which is measured by counting

the divisions on the circle between the lines which determine the

Fig. 4.
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angle. These lines are established by using a pair of sights,

or a telescope, fixed to an arm, called an alidade. The latter

turns on a pivot at the center of the circle, and carries a vernier

playing over the divided circle. Frequently, two verniers situ-

ated 180 apart are used to eliminate errors due to inaccurate

centering of the pivot.

Indirect measurement of length and angle. — Consider a

plane triangle of which A, B, C are the angles, and a
y
b, c are

the sides.

We have A + B + C = 180
,

as'mB = bsinA,

a2 = b2 + c2 — 2 be cos A.

These are three independent

equations always satisfied by these

six quantities. If three of these

quantities have been measured,

one of which, at . \

D
Fig. 5.

least, is a side, the others may be

calculated.

The only case of the above in-

direct method for measuring angle

which is used, to any great extent, in the physical laboratory,

is known as Poggendorff's method. It is as follows :

A straight scale is placed at a measured distance d
y
in front

of and parallel to a mirror. A telescope t (Fig. 5), which

establishes a sight line, is placed so that the scale is seen in

the mirror, the sight line being perpendicular to the scale.

The reading a of this sight line on the scale is taken ; the

mirror then turns through the angle 6 to be measured, and

the scale reading, b, is again taken. The sight line is evidently

deflected through 26, so that tan 26———> from which 6

may be calculated.
d
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6. Area.— The unit of area is denned as the area of a square

of which the side is unit length. Area is determined, funda-

mentally, by calculation from measured linear dimensions.

The planimeter is an instrument for measuring irregular plane

areas.

Consider a line AB (Fig. 6), of length /, moving in any man-

ner in the plane of the paper. The motion may at each instant

be considered as compounded of a motion of translation and

a motion of rotation, with angular velocity —— , about an arbi-
dt

trary point / distant d from the

center of the line. See Art. 82.

The area swept by this line

fit is considered positive when the

line sweeps over it from left to

right to an observer looking from

A to B. Let v be the resolved

part, perpendicular to the line,

Fi 6
of its velocity of translation.

The line sweeps over area at

the rate Iv because of its motion of translation, and at a rate

ld-±- because of its motion of rotation, so that the total rate at
at

which the line sweeps area at each instant is

Let a wheel, radius r, mounted at /, with its axis parallel to

AB, be allowed to roll on the paper as the line moves, and let

—
f- be the angular velocity of rolling of the wheel.

dt

Then zra=r-^-, and equation (2) becomes
dt

dt dt dt

or A = /i-f + d/<l>: (3)
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A, yjr, and
(f>

being reckoned from the initial position of the line

for which A = o, i/r= o, and
<f>
= o. If the line comes back to its

initial position, or parallel thereto, so that <£= o, then equation

(3) becomes A — /njr
}
and the

circumference of the wheel (\>

may be so divided as to read

areas directly.

Let one end of AB (Fig.

7) be constrained to move

along a branch AC of any

curve, while the other end
rig. /. \p

passes once around a closed

line D. Any area outside of D which is swept at all must

be swept as many times to the right as to the left, and all

parts of D are swept once more to the right than to the left,

so that the total area swept by the line is equal to the area of

D. In its simplest form the planimeter consists of an arm AB
with a rolling wheel. The end A is constrained to move on

the arc of a circle, being hinged to one end of an auxiliary

arm, the other end of which is fixed by a pivot.

7. Mass. — The Kilogram is denned as the mass of a piece

of platinum deposited in the Archives in Paris. The gram,

which has been adopted by common agreement as the funda-

mental unit of mass, is one-thousandth of a kilogram. This

kilogram was made by Borda to be equal to the mass of

1000 c.c. of pure water at 4 C, but copies of the kilogram can

be made with much greater accuracy and with greater con-

venience by direct comparison with the " Kilogramme des

Archives" than by comparison with the cubic decimeter of

water, so that the above has been adopted as the definition.

The Pound (avoirdupois), which is the British commercial

unit of mass, is the mass of a piece of platinum deposited in

London. The pound (avoirdupois) is equal to 0.453593 kilo-

grams.
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8. Measurement of mass : the balance. — The masses of two

bodies are considered equal when they are attracted by the

earth with equal force. The analytical balance, the essential

parts of which are shown in rug. 8, is the most sensitive

instrument for the determination of mass, and indeed the most

precise of all the apparatus used in physics. It is a very

delicately mounted equal-arm lever with suspended pans.

Fig. 8.

The balance is used for indicating the equality of the masses

of two bodies. It is evident that in making a measurement the

position of rest of the pointer p with loaded pans must be the

same as with empty pans if the masses compared are equal.

The masses are not generally exactly equal, however, and the

slight difference between them is determined by comparing

the difference of these two positions of rest of the pointer, with

the shift produced when a small known mass is added to one

pan.

In practice, these positions of rest are determined by starting

the balance swinging and observing an odd number of elonga-

tions of the pointer. The position of rest lies midway between

the mean of the elongations to the right and the mean of the

elongations to the left. This is called weighing by szvings.
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9. Weights. — A set of weights, by means of which the mass

of any body may be matched, is made by taking two bodies

weighing together one kilogram and equalizing them, then two

bodies weighing together half a kilogram and equalizing them,

and so on. A set of weights more convenient in use is one

which includes a five, a two, and two ones of each units, tens,

hundreds, etc., of grams.

The indications of a balance are subject to error because of

(a) inequality of arms, (b) difference in buoyant force of the

air upon the body and upon the weights, and (c) errors of

weights.

Errors due to inequality of arms are eliminated by weighing

the body first on one pan and then on the other. As the result

of this operation we have b= VlVrlVlf in which b is the true

mass of the body, and Wr and W
t
are the apparent masses

when weighed upon the right and left pans respectively.

Proof. — Since r and / are the lengths of the right and left

arms of the balance respectively, we have from the principle of

the lever Wrl=br and W
l
r=bl\ from which by elimination of

- we have b= V Wr W%,

The errors due to the buoyant force of air are easily elimi-

nated when the density, S, of the weights ; the density, A, of

the body ; and the density, X, of the air, are known. Let b be

the apparent mass of the body and W its mass independently of

errors due to buoyant force of air. Then

XV= b
_bX+ b\

(4)
o A

In this expression, - is the volume of the weights, and —- is the
o o

buoyant force of the air upon the weights, by which amount the

mass of the body is overestimated. Similarly, — is the buoyant
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force of the air upon the body by which amount the mass of the

body is underestimated.*

10. Errors of weights.— Consider a set of weights A,B,C, D
y

and E of nominal values 500 gr., 200 gr., 100 gr., 100 gr., and

100 gr., respectively. Having a small weight of which the

mass is known approximately, we weigh A in terms of B, C, D,

and E, whence
A=B+C+D+E+a; (5)

similarly by repeated weighing we obtain,

B=C+D+ b
} (6)

C=D+ c, (7)

£=E+ d. (8)

Having a standard kilogram, we weigh it also ; whence we obtain

1000=A +B+C+D+ E+e. (9)

From these five equations, A, B, C, D, and E
}
which are the

only unknown quantities, may be calculated.

11. Density. — The density of a body is defined as its mass

per unit volume. This definition may be expressed by the

equation

*=f; (»)

in which D is the density, M is the mass, and V is the volume

of the body.

The specific gravity of a substance at a given temperature is

* For further discussion of the theory of the balance, and for descriptions of various

forms of balances and scales, see Violle, Cours de Physique, I. p. 245; also Ency-

clopedia Britannica, 9th ed., art. Balance.
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in which 5 is the specific gravity of the substance and — is the
a

ratio of its density D at that temperature to the density d of

water at the same temperature.

Since masses of equal volumes of a substance and of water

are proportional to their densities, we have also

s=w (12)

in which M is the mass of a portion of the substance, and W is

the mass of the same volume of water.

12. Measurement of density. — The specific gravity of a sub-

stance is generally determined by weighing equal volumes of

the substance and of water. For this operation the principle

(Archimedes) that the buoyant force of a liquid upon a sub-

merged body is equal to the weight of a volume of the liquid

equal to the volume of the body, furnishes the most feasible and

accurate method. To obtain the density, equation ( 1 1) is then

used.

The use of this equation involves a knowledge of the density

of water, which has been determined with great accuracy at a

standard temperature by finding the buoyant action of the liquid

upon an accurately ground cubical block of glass of which the

dimensions have been measured and the volume calculated

(Borda). The density of water at other temperatures has been

determined by methods, the discussion of one of which is given

in article 232.

13. Gravimetric methods for measuring volume.—The volume

of any solid may be calculated from equation (10), the mass

of an equal volume of water having been determined and the

density of water being known. Similarly, the volume of a

vessel may be found, the mass of water, or mercury, held by the

vessel having been determined. For measuring liquids, when
little accuracy is required, graduates are used.
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A graduate is a vessel, best cylindrical, upon which a scale

has been constructed by marking the position of the surface of

successive additions of mercury, or of water, of known volume.

Such a vessel is useful for quick measurements.

LIQU

m
D OF SP.GR.
|

S : 1.1

a ="1.50

-1.00

1.10

1.20

1.30

1.40

1.50

Fig. 9. Fig. 10.

14. The hydrometer.— This is an apparatus much used for

the determination of the density of liquids. It is a glass float

(Fig. 9) with a vertical cylindrical stem, upon which is a scale

for indicating specific gravity of any liquid in which it is placed.

Hydrometers were originally constructed with various arbi-

trary scales, of which that of Beaume is the best known. It

is, indeed, still sometimes used in commercial work. Modern

hydrometers, however, are generally graduated so as to give the

specific gravity directly, or to indicate the percentage strengths

of the particular solution, in the testing of which the hydrometer

in question is to be used.

For the construction of a specific gravity scale, the water-

mark w (Fig. io), and the mark m, to which the instrument

sinks in a liquid of known specific gravity a, are determined,

and the distance / between these marks is measured. The dis-
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3

tance d from the water-mark to the mark ;;/', to which the

instrument will sink in a liquid whose specific gravity is s, is

1

d~l—\; (13)

I

a

from which the position of each mark of the scale may be

calculated. The figure shows such a scale for liquids between

sp. gr. 1.00 and sp. gr. 1.50.

Proof.— A floating body displaces its weight of liquid. The

volume of water displaced by the instrument being considered

unity, the displaced volume of the liquid of sp. gr. a is -, and
1

a

the displaced volume of a liquid of sp. gr. s is - ; also the volume
s

1

of the stem, between water-mark and tf-mark is 1
, and the

a

volume of stem between water-mark and j-mark is 1— . Since
s

the stem is cylindrical, these volumes are directly proportional

to the distances / and d; whence the formula.*

As has already been stated, hydrometer scales are fre-

quently constructed to give directly percentage strengths of

solution of a given substance. To this end specific gravities of

solutions of various percentage strengths are determined, and

these specific gravities are substituted for s in the above formula,

and the marks thus found are numbered as percentages.

A class of instruments depending upon a slightly different

principle are the hydrometers of constant immersion of Fahren-

heit (Fig. 1 1 a) and of Nicholson (Fig. 11 b). Both of these may
be used for comparing the densities of liquids by determining

the weights which must be placed upon the scale pan (s^) in

order to submerge the hydrometer to a certain mark upon the

*The true sp. gr. corresponding to any reading on the Beaume scale may be

calculated from this formula, putting, for scale of heavy liquids, I = 15, a — 1.110,

which is the sp. gr. of a 15 % solution of NaCl; s is then the true sp. gr. correspond-

ing to d° Beaume.
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stem. Nicholson's hydrometer, which carries a scale pan (s
2 )

at the bottom also, is likewise used as an ingenious sort of

water balance, for determining the specific gravities of solids

by weighing in air and in water.

_<§&&>—

Fig- 11(a). Fig. 1 1 \kt

15. Time.— The second, which is the accepted unit of time

in physical measurements, is defined as the 86400th part of a

mean solar day.

Measurement of time. — Any movement of a body which

repeats itself in equal intervals of time is called periodic motion

;

single movements are called vibrations. All methods, with

unimportant exceptions, for measuring time depend upon peri-

odic motion. A vibrating pendulum is the most familiar exam-

ple. The number, a, of vibrations in a day, and the number, b,

in the interval to be measured, are counted. The interval is

then - of a day. A clock is simply a machine for maintaining
a

and counting the vibrations of a pendulum. In portable clocks

a "balance wheel" takes the place of a pendulum.

Anything which affects the time of vibration of a pendulum
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leads to erroneous values, for time intervals as measured by a

clock. The time of vibration of a pendulum is affected (a) by

temperature, on account of increase of length of pendulum with

temperature
;

(b) by variations of atmospheric pressure, on

account, mainly, of variation of buoyant force of air with pres-

sure
;
(c) by variation in amplitude of vibration ;

(d) by irregu-

larities in the manner in which impulses are imparted to the

pendulum by the clockwork. The influence of temperature is

avoided by using what are called compensated pendulums, which

do not change their effective length with temperature. The

variations due to (c) are in part obviated by providing constant

driving power, which requires the gears and escapement to be

of fine workmanship. The variations due to (d) are obviated

by using what are called dead beat escapements, which impart

their impulse to the pendulum at the instant when it passes

through the vertical position.*

16. The chronograph. — The determination of a time interval

by means of a clock requires the clock reading to be taken at

the beginning and at the end of the interval. Practice enables

an observer to take the clock reading at the instant of a given

signal accurately to a tenth of a second, with an approximately

constant " personal " error, which does not greatly affect the

value of the interval. In this method, which is called the eye

and ear method, the observer looks for the signal and listens to

the beats of the clock.

The chronograph (Fig. 12) is an instrument for enabling clock

readings to be taken with greater ease and accuracy than is

possible by "eye and ear." It consists essentially of a uni-

formly moving strip of paper usually wrapped about a cylinder.

Upon this a line is traced by a pen. This pen is fixed to the

* For discussion of errors of clocks, and description of escapements, see Encyclo-

pedia Britannica, 9th ed., article Clock. For description of compensated chro-

nometer balance and chronometer escapement, see Lockyer's book entitled Star-

gazing, pp. 175 to 210.
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armature of an electro-magnet, which is excited at each beat of

the clock by means of an electrical contact device actuated by

the pendulum. A kink is made in the traced line at each

Fig. 12.

excitation of the magnet. At the instant for which the clock

reading is desired, the electro-magnet is momentarily excited by

pressing a key which closes an auxiliary circuit. The clock

reading is determined by measuring off the position of the kink

a
_n r-L-

J=^C

—n n r\ n n a-n n

—n n n n n n n.—n n n n n n n.—n n n n n n n.
_n r\ , r* . t r\ n n_

—

n

n n _n »_r\ n n_

_n 1—U~> n n n n i 1_

-n r\ n n n n n n

—

r\ r\ n n n n "
r\ .T n n r n n
n n i-i n n n n

Fig. 13.

thus produced, among the kinks produced by the beats of the

pendulum.

Figure 13 shows the reduced facsimile of a portion of the

sheet upon which a chronographic record has been made. The

kinks marked a, b, c, etc., are those by means of which the

observations were recorded.



CHAPTER II.

PHYSICAL QUANTITY.

17. In the expression of a physical quantity two factors always

occur, a numerical factor and a unit. The numerical factor is

called the measure of the quantity and its determination is the

object of physical measurement.

Algebraic operations upon physical quantity involve both unit

and measure ; for example, am x bn = ab • mil, and am-h-bn= - •—

,

b 11

where a and b are numerical factors, and ;;/ and ;/ are physical

units. In such cases 11111 and — are considered new physical
n

units. Thus io cm. x io cm. = ioo (cm.)2
; 20 grams -+ 10 c.c.

gr.
= 2— > read grams per cubic centimeter. The word per indi-

cates that the unit following is in the denominator.

18. Units, fundamental and derived.— The fundamental phys-

ical units are those fixed by arbitrary, preserved standards.

There is much latitude in the choice of fundamental units.

A single fundamental unit is sufficient, but to derive all physi-

cal units from one would lead to many cases in which the

measurements for the determination of a copy of a derived unit

would be much less accurate than the measurements in which

this copy is used as a working standard. The units of length,

mass, and time have been adopted as fundamental units.

Derived physical units are those which are defined in terms of

the fundamental units and of which no material standard need

be preserved. It often occurs that copies of a derived unit are

carefully made and preserved, and used as " working standards
"

of reference.

c 17
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The C. G. S. System of Units.

Derived units based upon the centimeter as the unit length,

the gram as the unit mass, and the second as the unit of time,

are in common use. This system of derived units is called the

c. g. s. system.

19. Dimensions of derived units.— The definition of a derived

unit in every case implies an equation which involves that unit

together with the units of length; mass, and time. This equation

solved for the derived unit is said to express the dimensions of

that unit. For example, let / be a unit length, m a unit mass,

and t a unit time; then area =/ 2
, volume =/ 3

, density =—,
13 '

velocity = -> force =-y, magnetic pole = > etc.

In those cases in which a derived unit of the c. g. s. system

has no specific name it is specified by its algebraic expression in

terms of the centimeter, the gram, and the second. Thus the

unit of momentum is written EJ—:—. (spoken gram-centimcter-
sec.

per-second), and the unit of moment of inertia is written gr. cm.2

(spoken gram-centimetei'-sqnare). In case of units which have

complicated dimensions this method is not convenient in speech.
1 8

Thus we specify a certain magnetic pole as 1 50 s_: :_, spoken

150 c. g. s. units pole. Many derived units have received

specific names. Such are the dyne, the erg, the ohm, the volt,

etc.

Secondary derived units. — In many cases the c. g. s. unit

of a quantity is either very large or very small in comparison

with ordinarily occurring values of the quantity. It is then

more convenient to use a submultiple or a multiple of the

c. g. s. unit. Such units are called secondary units or practical

units. For example, an ordinary arc lamp has 5,000,000,000

c. g. s. units, or 5 ohms of electrical resistance. An ordinary

Leyden jar has, say, 5 x io~18
c. g. s. units, or .005 micro-farads
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of electrostatic capacity. It is convenient and customary in

writing large numbers to use some positive integral power of

ten as a factor, and, in writing very small numbers, to use,

as above, some negative integral power of ten as a factor.

20. Scalar and vector quantities. — A Scalar is a quantity

which has magnitude only. Volume, mass, time, energy, elec-

tric charge, etc., are scalars. Scalars conform to all the ordi-

nary rules of algebra ; indeed, ordinary algebra is the algebra

of scalar quantity.

A Vector is a quantity which has magnitude and direction.

Length, area, velocity, force, etc., are vectors. A vector requires

three independent scalar specifications, which are called the

elements of the vector. These elements may be, for example,

the components of the vector in each of three chosen directions.

A vector equation, a = j3, is equivalent to three scalar equa-

tions, for the scalar elements of a must be equal to the three

scalar elements of /3, each to each.

Vector algebra differs from scalar algebra, first, as to concep-

tions of addition, subtraction, multiplication, and division, and,

second, as to rules of symbolic operations. This second point

of difference grows largely out of the fact that in vector analy-

sis «/3 = — ffat
and although it is important in mathematical

physics, it cannot be discussed here.

The first point of difference is more intimately connected

with the physical nature of vectors, and is exceedingly impor-

tant to the beginner. All vector quantities grow out of Length,

and depend either upon single lines or upon the mutual relation

of two or more lines, so that the principles of vector algebra,

when established for the Ime, are completely established, and

need no further proof. It is true, moreover, that vectors of any

kind are best represented by lines, to scale. Hereafter letters

will be occasionally used for vectors and scalars indiscrimi-

nately, and the student will be obliged to bear in mind the

distinction between the two.
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21. Vector addition. — A number of similar vectors are repre-

sented by lines a, fi, 7 (Fig. 14) ; line a being drawn from a point

_P o, line /3 from the extremity of a, line 7
\ from the extremity of /3, etc. The line

°^~--~~^_ \ drawn from o to the terminus of the last

Pig. 14 .
~^ line represents the sum of the vectors.

Proof.— The vectors a, ft, 7, etc., being linear displacements

of a point, their sum is understood to mean the single displace-

ment equivalent to them all, and this is, of course, the single

displacement from the initial to the final position of the

point.

The vector polygon. — The sum of a number of similar

vectors is zero when they are parallel to and proportional to

the respective sides of a closed polygon, and in the directions

in which these sides would be traversed in going round the

polygon.

22. Resolution of vectors. — Any vector may be replaced by

a number of vectors of which it is the sum. The simplest case

is that in which a vector is replaced by two vectors which are

parallel and proportional to the respective sides of a parallelo-

gram, of which the diagonal represents the given vector. If a

rectangular parallelopiped be constructed whose diagonal repre-

sents a given vector, then the edges of the parallelopiped will

represent what are called the rectangular components of that

vector in the directions of those edges.

23. Scalar and vector products and quotients. — The product

or quotient of a scalar and a vector is another vector parallel to

the vector factor.

Examples.— ( 1
) The expression F—pa, in which / is an

hydrostatic pressure, a an exposed plane area, and F is the

force acting upon that area. (Note that the vector direction

of an area is its normal.)
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(2) The expression l=vt, in which v is the velocity of a

moving body, and / is the distance traveled in time /.

p
(3) The expression /=— , in which F is the force with

which a magnetic pole m is acted upon in a magnetic field

of strength f. W
(4) The expression — = F, in which Wis the work done upon

a
a body in moving it through a distance d, and F is the force

parallel to d, which must be acting upon the body.

24. Vector Products.

Case I. Parallel vectors. — The product or quotient of

parallel vectors is a scalar. Thus W—Fd, in which W is the

work done by a force F acting through a distance d in its

F
direction; p= —, in which p is the pressure in a liquid which

exerts a force F on an exposed area a ; V= la, in which V is the

volume of a prism of base a and altitude /.

Case II. Orthogonal vectors.— The product of two mutually

perpendicular vectors is a third vector at right angles to both

factors. Thus a= lb and b= -, in which a is the area of a rectan-

gle of length / and breadth b ; T= Fl, in which T is the moment

or torque of a force F, and / is its arm. The product of a vector

and a line perpendicular thereto is called a moment of the vector.

Case III. Oblique vectors. — The product of two oblique

vectors consists of two parts, one of which is a scalar and the

other is a vector. Consider two vectors, /3'

a and ft (Fig. 15). Resolve ft into two
J""

components, ft' and /3", respectively par-

allel to and perpendicular to a. Then Figf 15#

a{3= a(/3'+ {3")= af3' + aj3",

in which «/3' is a scalar and aft" is a vector. The scalar part of

a vector product is indicated thus, S. aft (read scalar-alpha-betd).
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The vector part of a vector product is indicated thus, V. aft (read

vector-alpha-betd). When V. ctft= o, a and ft are parallel; when

5. aft= o, a and ft are orthogonal.

Examples. — (i) V. bl is the area of any parallelogram of

which b and / are the sides.

(2) 5. al is the volume of any parallelopiped of which a is the

area of the base and / is the other edge.

25. Constant and variable quantities. — Many physical quan-

tities are either constant or they change so slowly that the

phenomena which depend upon their variation are inconsid-

erable. In the study of phenomena which depend upon such

quantities, the attention need not be directed to what is taking

place at a particular instant, inasmuch as the phenomena persist

unchanged throughout long intervals of time.

Other physical quantities are peculiarly subject to rapid varia-

tions, and it often occurs that certain phenomena depend upon

these variations in such a way as to be inconsiderable or non-

existent when these changes take place slowly or not at all.

Thus all kinds of force, including torque, pressure, electromotive

force, etc., are intimately associated with changing states of

motion and would no doubt be absolutely non-existent if the

state of motion of the involved bodies and particles were strictly

constant. In the study of such phenomena the attention must

be directed to what is taking place at a particular instant.

The average rate of change of a quantity x during a time

interval At is defined as the quotient obtained by dividing the

change Ax suffered by that quantity during the interval, by the

interval. The instantaneous rate of cJiange of x is the limiting

value of this quotient when the time interval is very small.

The instantaneous rate of change of x is sometimes represented

dx
by the symbol x, sometimes by the symbol -—

• In case x is

dt

variable, its rate of change is defined in the same way, and is

called the second rate of change of x. It is represented by x or
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^V2 y . x x—'-• The dimensions of x and x are - and — respectively. If
dt2 t t

2 F 3

x is a scalar, x> x, etc., are scalars, since Ax is then a scalar and

A/ is a scalar. If # is a vector, then .r, ir, etc., are vectors.

The direction of xt = ——J is that of A;r, see Art. 23.

Consider a changing vector «, and let it be represented at

each instant by a changing line /(Fig. 16)

drawn to scale, from a stationary point O.

Then a= s /, where j is the .sra/tf «?//;z-

forof the diagram. Let A/ be the change

in /during A/; then °

A A , , Aa A/Aa= J A/ and— =j—

-

At At

Now the limiting value of — is a, and the limiting value of —
is the velocity of the point P, therefore if any vector is repre-

sented to scale by a line OP drawn from a stationary point, then

the rate of change of that vector is at each instant represented to

the same scale by the velocity of tJie point P.

26. Distributed quantity. — A physical quantity may refer to

the state of a medium, having definite values at each point, in

such a way that the value of the quantity at a point specifies the

state of the medium at that point. Such a quantity is called a

distributed quantity. Thus in a liquid the pressure has at each

point a definite value (distributed scalar), and a moving liquid has

at each point a definite velocity (distributed vector). A magnetic

field, in the same way, has at each point a definite intensity

(distributed vector). Another example is that of the strain at

each point in a distorted solid, which is definite in value.

The distribution of a quantity is said to be ho?nogejieous or

uniform when it has the same value at all points ; otherwise the

distribution is said to be non-homogeneons. In the study of

phenomena, dependent upon distributed quantity, in cases in
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which the distribution is non-homogeneous, the attention must

be directed to what takes place in small regions.

27. Complex physical quantity. — A scalar may be defined as

a quantity which depends upon a single numerical specification.

A vector, as has already been indicated, depends upon three in-

dependent numerical (scalar) specifications, and is distinguished

among others of the same degree of complexity by the interpre-

tation adopted for products and quotients of the scalar units.

There are quantities, however, which are more complex. Thus

stress and strain, in the simplest case, depend each upon six

independent numerical (scalar) specifications, and there are other

physical quantities of still higher complexity. All such com-

plex quantities are intimately connected with geometry, and it is

very important that the student attain to a degree of familiarity

with them, inasmuch as the imaging faculty is greatly strength-

ened thereby. For purposes of numerical calculation scalars

only are important. For such purposes all complex quantity

must be degraded to scalars, and the scheme made use of in this

degradation must be kept in mind. Such schemes are the

essence of physical theory. Methods for reaching numerical

results by vector calculations can only be attained by the use of

geometrical-mechanical appliances. Arithmetical methods are

essentially scalar, and require all data to be reduced to that

character.



CHAPTER III.

LAWS OF MOTION ; FALLING BODIES ; PROJECTILES.

28. In extended treatises the subject of mechanics is usually

divided into kinematics, which is properly a branch of geometry

and treats of motion in the abstract ; and dynamics, which treats

of the motion of bodies under the action of force.

Dynamics is itself divided into statics and kinetics. Statics

is the study of forces in equilibrium, and kinetics is the study of

the motion of bodies upon which unbalanced forces act. For

our present purpose it is not convenient to treat these different

branches separately.

29. A material particle is a body of such small dimensions

that it may be considered to be concentrated at a point. The

earth, for example, as a part of the solar system, may be treated

as a particle. Any rigid body which is constrained to move

without rotation may be treated as a particle so far as concerns

its behavior under the action of force.

30. The position of a particle is specified by its co-ordinates

.r, y, and z referred to arbitrary axes of reference. The line

drawn from the origin of co-ordinates to the particle is called its

position vector. This line is always to be thought of when we
speak of the position of a particle.

31. The displacement of a particle is a change in its position.

The displacement is specified by the changes, A.r, Aj/, and As, in

the co-ordinates of the particle. The line drawn from the initial

to the final position of a displaced particle is called its displace-

25
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ment vector. This line is always to be thought of when we

speak of the displacement of a particle.

32. The addition of displacements. — Any number of con-

secutive displacements a, b, c, and d of

a particle P (Fig. 17), are together

equivalent to the single displacement c,

which is their vector sum. Displacement

is the fundamental vector quantity, and

the proof of the addition theorem for dis-

placements involves the proof of that

theorem for all vector quantities. (See Art. 21.)

33. The velocity v of a particle is the rate of change of its

position ; that is, it is the limiting value of — , in which At is the

displacement of the particle during the interval At. The com-

ponents of v are —, -—-, and -j~ The dimensions of velocity

are - The unit velocity, one centimeter per second, is some-

times called the kin for brevity.

The orbit of a particle is the path it describes in its motion.

The velocity of the particle is at each instant tangential to

the orbit.

The acceleration v of a particle is the rate of change of

dP'x d2v d2f-

its velocity. The components of v are -—,
—

-j, and — . The

dimensions of v are -•

t
2

34. Graphical representation of velocity and acceleration.— Let

the line / (Fig. 18), drawn from a

^ fixed point O' , represent the velocity

of a moving particle at a given

l+Ai instant. Then v— sl, s being the

Fig. is. scale to which v is represented by /.
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After a time At has elapsed the velocity becomes

v+ Av= s(l+Al),

so that Av= sAl or —=s— or v=s — :

At At At

but— is the velocity of the point P' , hence, if the velocity of a

moving particle be represented, to scale, by a line draw?i from a

fixedpoint, the velocity of the moving end of the line represents

the acceleration of the particle to the same scale.

35. The hodograph to an orbit is the curve traced by the point

P' in Fig. 18, the line 0'P f being drawn so as to represent the

velocity of the moving particle at each instant. The point P l
is

called the generating point of the hodograph.

36. Components of acceleration perpendicular to and parallel to

velocity.—The acceleration of a particle may be resolved into

two components at each instant, one parallel to v and the other

perpendicular thereto. The former component affects only the

magnitude of v, while the latter affects the direction of v and

determines the curvature of the orbit, as follows

:

Let r be the radius of curvature of the orbit, v the velocity of

the particle, and v the component of the acceleration perpen-

dicular to v\ then (article 58, equation 34):

T (I4)

37. Newton's Laws of Motion.

I. All bodies persevere in a state of rest or in a state of

uniform motion in a straight line, except in so far as they are

made to change that state by the action of force.

II. (a) The rate at which the velocity of a particle changes

is parallel and proportional to the force acting upon the particle.

(b) The rate at which a -given force changes the velocity of a

particle is inversely proportional to the mass of the particle.
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III. Action is equal to reaction, and in a contrary direction.

The first law describes the behavior of a body upon which no

force acts. When the vector sum of a number of forces acting

upon a particle is zero, the forces are said to be in equilibrium

and the particle behaves as if no force were acting upon it.

Any body, as a boat or a train, which, even for a short time,

moves uniformly in a straight line, is a realization of the con-

ditions of the first law.

The second law describes the behavior of a body when acted

upon by a force, and is really the definition of force. The third

law states that all forces are due to mutual action of bodies, and

that the mutual action of two bodies consists of two equal and

opposite forces, which act, one on each body, so that a change

in the state of motion of a body is always associated with a

simultaneous definite change in the state of motion of some

other body. All physical phenomena are ultimately connected

with such correlated changes of motion. The mutual force

action of two bodies is a stress, in an intervening medium or in

a connecting mechanism.

38. From the second law it is evident that the force which

acts upon a particle is proportional to the product of the mass of

the particle and its acceleration ; hence, if the unit force be

chosen as that force which produces an acceleration of one kin

per second (Art. 39) in a particle of which the mass is one gram,

then
F=mv. (15)

In this equation m is the mass of a particle and v is the

acceleration produced by a force F.

The unitforce here defined is called the dyne.

ml
The dimensions offorce are —

.

39. Illustrations of the Laws of Motion.

Consider a string from which a bit of metal is suspended ; it

is in tension, so that a force acts on the bit of metal, which
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force balances the attraction of the earth for the metal (see

Arts. 40 and 41). Take the string in hand and give the bit of

metal a motion of rotation. The bit of metal then moves with

a continually varying velocity (the reader must not think only

of the magnitude of velocity which is a vector). The accelera-

tion, v
t
of the bit of metal is in the direction of the string (see

Art. 58), and may be very great. The string must be pulling

on the bit of metal with a force which is proportional to v by

the second law. The bit of metal reacts and pulls on the string

and, through the string, on the hand. A familiar example is

afforded in the operation of casting from the shore with the

hand line, as practised in the taking of bluefish. The fisher-

man swings his leaded hook around his head. The mass of

the hook is, perhaps, three or four hundred grams, but the

force upon the line, necessary to constrain the hook to a

circular path (second law) soon becomes almost great enough to

throw the fisherman from his feet. When released, the hook

travels, perhaps, a hundred meters, carrying after it several

hundred grams of line, and falls into the water beyond the

breakers.

A force is necessary to constrain each separate particle of

a rotating body to move in a circle, and it is a well-recognized

fact in the construction of machinery that no wheel, how-

ever strong, can be driven beyond a certain speed without

rupture.

In the case of a railway train on a curve, a side force must be

applied to change the direction of its motion. This side force,

being proportional to the acceleration, is proportional to the

square of the velocity of the train and inversely proportional to

the radius of the curve (see Art. 58, Equation 33). Ultimately

it becomes so great that it cannot be applied with safety, so

that one of the requisites of the very highest attainable speed

upon railways is the abolition of curves.

When a body, once put into motion, comes gradually to

rest, as most bodies do unless some properly directed force-
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action upon them from without be maintained, the checking

of the velocity, like the production of it, is due to the action

of some force.

The third law of motion is really a terse statement of the

nature of force. So long as the intervening medium by means

of which force is transmitted is a solid, the truth of the law is

obvious at once. It is obvious, for example, that the pressure

which can be exerted by means of a screw press is limited by

the resistance which the nut and its fastenings can offer to the

back thrust of the screw ; likewise that the structure which

prevents the shaft of a steamship from being driven forward

through the vessel must be capable of withstanding a force equal

to that by means of which the latter is urged through the water.

It is important to recognize that the law is a perfectly general

one ; in other words, that the force-ties between bodies are of the

same nature when the medium is a liquid or gas, or even when

it is the imponderable material which fills the interstellar spaces.

In the case of liquids and gases there are numerous familiar

phenomena by means of which the third law may be illustrated.

The phenomena of the reaction of liquid jets is utilized in a

variety of ways. It has been found feasible, for example,

although not economical, to propel vessels by means of steam

pumps which draw in water through pipes at the bows and

expel it at the stern. This plan is analogous to the method of

towing upon some European rivers which are too swift for ordi-

nary navigation, and where boats draw themselves up stream

by the continuous grappling of a cable which lies in the river

bed.

40. Weight. — It is found that at a given place on the earth

the acceleration g of a freely falling body is constant. This

constant acceleration is called the intensity of gravity at the

place. The force W which gravity exerts on a body is called

the weight of the body. From equation (15) we have

W= mg, (16)
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in which W is the weight of a body in dynes, m is its mass in

grams, and g is the acceleration of gravity in kins per second.

41. Gravitational units of force. — The intensity of gravity

is subject to but slight variations at different parts of the earth's

surface, so that the weight of a pound, or the weight of a gram,

is a convenient unit of force for some practical purposes. The

weight of a pound, when employed as a unit of force, is called,

for brevity, a pound.

42. Measurement of Force.

(a) Kinetic method.— The force acting upon a body of known

mass may be calculated by equation (15), the acceleration of the

body being determined by observation. This method cannot be

realized in its simplicity, but it forms the basis of many physical

measurements.

(a) Counterpoise method. — The force to be measured is

applied at one end of a lever, and counterpoised by weights

of known mass hung on the other end. The magnitude of the

force is then easily calculated in gravitational measure. In

case the force to be measured is

the breaking force of a wire or

beam, or the force necessary to

produce a given elongation or

flexure, it may be applied directly

by means of weights of known

mass.

(c) By means of the spring

dynamometer.— The elongation of

a spring is proportional to the

stretching force. The elongation

due to a known force being

observed, the force which pro-

duces any observed elongation may be calculated.

Frequently, where the forces to be measured are large, bent

springs are used, with a device for magnifying the movement.

Fig. 19.
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Figure 19 shows a well-known form. Such dynamometers are

calibrated by applying a series of known forces and marking

the deflections which they produce.

43. System of particles. — A number of particles of which

the aggregate motion is the object of study is called a system

of particles ; a portion of water, for example, is a system of

particles. The collective positions of the particles of a system

is called the configuration of the system. The collective veloc-

ities of the particles of a system is called the velocity config-

uration of the system. The expression " state of motion " of

a system will be used to signify both the position configuration

and the velocity configuration taken together.

44. A closed system is one which has no force acting on any

part of it from outside the system, or it is a system which neither

gives energy to nor receives energy from any other system (see

Art. 83).

45. The mass-vector of a particle is defined as the product

of the mass of the particle into its position vector ; that is,

M=ml
t (17)

in which M is the mass-vector of a particle, m is its mass, and

/ its position vector. The components ofM are mx, my, and mz.

46. Center of mass. — The sum of the mass-vectors of all the

particles of a system divided by the total mass of the system is

the position vector of a point called the center of mass or the

center of inertia * of the system. The co-ordinates X, Y, and

Z of the center of mass of a system are

vmxA =_
v—

'

2.1)1

r=^m, (is.
zm

7 2^mzZ=^—

'

2.7)1

* Sometimes called also center ofgravity.
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as is evident when we consider that the components of the mass-

vector of a particle are mx> my, and mz
t
and that the sum of

the -r-components of a number of vectors is the ^-component

of their sum (see Art. 21). It follows that tmx is the ^-com-

ponent of the sum of the mass-vectors of the particles, and

^l£ is the ^--component of the position vector of the center of
z,tn

mass of the system or the ;r-co-ordinate of that point. If the

origin of co-ordinates is at the center of mass of the system,

then X— Y=Z=o, and equations (18) become

£//z;tr=o,

1mj= o, (19)

%mz= o.

47. Momentum.— The momentum of a particle is defined as

the product of its mass into its velocity. Since the mass of a

particle is constant, we have from equation ( 1 7)

dM dl dM , c
=;;/— or = mv. (20)

dt dt dt
'

The momentum of a particle is therefore equal to the rate of

change of its mass-vector. From (20) we have

cPM dv d2M . , ,—— = ;;/— or —— = mv
; (21)

dp dt dt>
}

that is, the second rate of change of the mass-vector of a par-

ticle is equal to the force (mv by equation 15) which acts upon

the particle.

48. Conservation of momentum Consider two particles of

a system. Let m and m
x
be their masses, / and l

x
their position

vectors, v and v
x
their velocities, and v and v

1
the parts of their

accelerations, which are due to their mutual action. From
equation (15) and Newton's third law we have mv Jrm^u

x
= o

}

whence mv+m
1v1

is a constant so far as the mutual action of

D
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these two particles is concerned. What is true of this pair of

particles is true of every other pair in the system ; hence the

sum of the momenta of the particles of a closed system never

changes.

49. Motion of the center of mass of a closed system. — The
momentum of a particle is the rate of change of its mass-vector

(see Art, 47) ; and by algebra

. . d(ml) . dimJ-,) d , , ,
, . xinv+m l

v
l+ ••• = v ' + v / 1; '~ =—(ml+m

1
l
1

-\— ),
dt dt dt

so that the sum of the momenta of the particles of a system is

the rate of change of the sum of their mass-vectors.

Hence by Article 48 the sum of the mass-vectors of the par-

ticles of a closed system changes at a constant rate. From the

definition of center of mass this requires the position vector

of that point to change at a constant rate, and since the rate of

change of the position vector of a point is the velocity of that

point, it follows that the center of mass of a closed system moves

at uniform velocity in a straigJit line.

If outside forces act upon the particles of a system producing

accelerations v, vv v
2, etc., then since mv=

j, 2
' by Art. 47,

we have
d\ml) d\m

x
L)

,

where Z =—^-, i.e. L is the position vector of the center of
z,m

inertia of the system. But mv +m x
v

x
-\— is the vector sum F

d2L
of the forces acting on the particles, and—- is the accelera-

tion V of the center of inertia, so that F= Hm • V. It follows

that the center of mass of any system ofparticles tinder the action

of external force moves exactly as would a particle of mass Zm
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under the action of a force equal to the vector sum of the forces

which act on the system.

50. Uniformly accelerated motion. — Consider a particle, a

freely falling body for example, of which the velocity increases

at the constant rate g. Let the .r-axis of reference be chosen

downwards in the direction of this constant acceleration ; let i\

be the velocity parallel to x at the instant from which time is

reckoned, and let the origin of co-ordinates be chosen as the

position of the particle at the same instant. When t=o, we

have —= vv and ,r=o. The acceleration being parallel to x is

at

—, so that

dx
whence, in general — =gt+ vv (23)

dt

and x=±gt2+ v
l
t. (24)

If the particle have any horizontal velocity h, it will remain

unchanged during the motion. Let the F-axis be chosen in the

direction of // ; then the j/-co-ordinate of the particle at a given

time / is

y= ht. (25)

Eliminating t from (24) and (25), we have

gj?+ 2 hv
xy= 2 h2x, (26;

which is the equation to the parabolic orbit of the particle.

51. Experimental study of the Law of Falling Bodies.

( 1 ) Case of a body falling from a state of rest.

In equation (24) v
x
= 0,

and we may write x=\gft",

and when t=\, x=\g.
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The relations to be verified by trial are :

x : /
2 and x :g ;

also g= v
x
= 2 x

x

(where v
x
and x

x
are velocity at end of one second and the path

traversed during the first second respectively) ; and finally from

equation (23)
v : / and v : g.

The acceleration due to the gravity is so great that it is dif-

ficult to make direct observations upon a body falling freely

through space under the full

attractive force of the earth.

It is possible, however, to

reduce the force at will with-

out materially changing the

law of the falling body.

F'g- 20- Galileo used for this pur-

pose an inclined plane down which a ball was allowed to roll.

It is obvious that in this case the component of the earth's

attraction (/, Fig. 20), which urges the ball down the plane,

may be given any desired value, since

f=.mg sin a=mg sin /3,

where /3 is the angle which the plane makes with the horizon.

The force is still a constant one, moreover, and the results

obtained are applicable also to the case of a body falling freely

through space.

By means of experiments made with this device, and checked

by other methods, such as the observation of the time of flight

of bodies allowed to fall freely from the various galleries of the

leaning Tower of Pisa, Galileo established experimentally the

relations contained in equations (23) and (24), and deduced

the first and second laws of motion afterwards formulated by

Newton.
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A more modern, and, in some respects, a more refined device

for the study of the laws of falling bodies, is Atwood's MacJiine

(1784).

In this instrument two equal weights of mass M are sus-

pended by means of a light cord from a perfectly balanced

wheel (Fig. 21). A similar cord, cc, hangs from

below the weights, so that the masses pendent

at the two sides of the wheel will always be the

same whatever the position of the weights may

be. The wheel is mounted so as to be as nearly

frictionless in its bearings as possible.

If a small additional weight ;;/ be added to either

side, the mass on that side falls as though acted

m
g, where gupon by a constant force —

1 J 2M+7/1+MQ
is the acceleration of gravity and M is a con-

stant, called the equivalent mass of the wheel.

The machine is further provided with a vertical

rod divided to millimeters, and carrying—
(a) at the top of the scale a hinged platform (a)

(Fig. 22);

(b) an adjustable platform (b) (Fig. 23) sliding Fig. 21.

upon the rod by means of a collar or sleeve and capable of

being set in any desired position

;

(c) an adjustable ring (r) (Fig. 24), the aperture of which is

sufficient to allow the weight M to pass.

The center of these platforms and of the ring coincide with

the line of the suspension cord and the vertical axis of the sus-

pended weight on that side of the machine.

There is also attached to the instrument a pendulum which

beats seconds and which actuates a single mechanical or electri-

cal device by means of which the hinged platform may be made
to fall from under the weight M+m, previously resting thereon,

at the beginning of a given second.

Of the small weights or riders, there are several, mv m2 , ;;/
3 ,
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etc., differing in mass ; each of them bearing a known and sim-

ple relation to that of the large weights MM. Some of these

db

=£^.W:1*

d
HE

Qfo

Fig. 22. Fig. 23. Fig. 24.

are of disk form with a slot (Fig. 25) (#) and capable of passing

through the ring. Others are oblong (Fig. 25) (b) and will not

pass through the ring.

Fig. 25.

To verify the relation of distance to time, the weight M,

carrying one of the riders, is placed upon the hinged platform.

When released by the pendulum it falls with a uniformly accel-

erated motion. The positions upon the rod at which the adjust-

able platform must be placed receive the weight at the end of

1, 2, 3, etc. ; seconds are determined by trial. Their distances

,rv x2 , x3 , etc., from the starting point are relatively as 1 : 4 : 9,
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etc., in conformity with the relation x : /2, which is to be

verified.

To verify the law of velocities, the oblong rider is used.

By placing the ring at a point on the rod such as to remove

the rider at the end of the first second, the motion from that

instant on is rendered uniform. The position of the platform

(Fig. 23), when it checks the weight at the end of the subse-

quent second, is such as to demonstrate the relation

In a similar manner the relation of the velocity to the time

may be studied.

To verify the relation x : f, where f is the acceleration due

to the weight of the rider, two riders, the names of which are

m
x
and ?;/

2 , are used, and the distances traversed under their

action are noted.

In this case we have two equations,

f — m
\

fl ~ g2M+Ms + m^

(27)

/2 g2M+ M + m2

'

from which, by elimination of the common constants g and

(2M 4- M ), we obtain the formula

A m2

(28)

The experiment, therefore, is reduced to demonstrating the fact

that the paths traversed in a given time are proportional to the

masses of the riders.

152.
The hodograph to the orbit of an uniformly accelerated

particle is a straight line parallel to the acceleration. The veloc-

ity of the generating point P r

is constant, and the ratio of this
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equal to the ratio of the distance O fA to the horizontal velocity

h of the particle ; all of which is evident when we consider that

radius vector O'P' represents the velocity

of the particle to the same scale that the

velocity of P' represents the acceleration

of the particle.

53. Projectiles.— Let v (Fig. 27) be

the initial velocity of a projectile, and 6

the angle of elevation of the gun ; then

v cos 6 = h and — v sin = vv where //

and v
x
have the same significance as in

article 50. The co-ordinates of the pro-

jectile after time / are given by equa-

tions (24) and (25).

The range of a gun is the horizontal

distance traveled by the projectile by the

time it has reached the level of the gun

on its downward flight. The range / is

found from equation (25) by putting x = o

and writing the above values for // and v
x ; whence

Fig. 26

/ = 2 v2 cos 6 sin 6
(29)

The range is evidently a maximum when 6 = 45 °.

54. Orbits of projectiles in a vacuum, whatever be the direc-

tion of the initial velocity, are parabolic. Figure 28 shows three

such paths, belonging to projectiles from a common point

with the same initial velocity. The elevations are 30 ,
45 °, and

6o° respectively.

The range for 6o° and 30 , i.e. Oz>, is the same, an obvious

deduction from equation (29), since sin 30 = cos 6o°, and vice-

versa.

If an ellipse (Fig. 29) be drawn with the orbit of a vertical

projectile for its minor axis and its major axis equal to the range
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of the same projectile fixed at an elevation of 45 , all projectiles

from O with the same initial velocity, whatever their elevation,

will culminate {i.e. reach their highest point) upon the periph-

ery of the ellipse.

It is a fundamental as-

sumption in the analysis of

the motions of projectiles

that the attraction of the

earth is precisely the same

upon bodies at rest and

bodies in motion, so that

the vertical component of the flight of a projectile is the

same as that of a body falling from a state of rest. This

fact may be readily demonstrated by means of a well-known

class-room experiment in which a ball from a spring gun,

Fig. 29.
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mounted horizontally (Fig. 30) is so adjusted as to cut the path

of a weight falling from a state of repose.

The ball upon leaving the gun severs an electrical connection

and releases the weight (w), which has been held by an electro-

magnet in a positiop

in the prolongation of

the axis of the gun.

UhT_ iy Whatever the initial

\ velocity of the ball, it

inevitably strikes the

falling weight ; or if its

range be insufficient,

the two reach the floor

the same instant.

Fig. 30.
s.

55. Projectiles in a resisting medium : the ballistic curve.—
Equations (22) to (27) assume a constant acceleration, which

condition is not exactly satisfied by a projectile on account of

the resistance of the air. The orbits of projectiles, in general,

therefore, are not strictly parabolic. The paths which they

describe are called ballistic curves.

The study of such curves, in the case of projectiles of high

velocity, requires the employment of elaborate experimental

methods. The paths of bullets and of the other projectiles of

warfare, with which the student of gunnery has to deal, vary

widely from the parabola.

Projectiles of small velocity, however, have paths which are

very nearly parabolic indeed. A convenient case for experi-

mental study is that of a small jet of water or mercury flowing

under constant head. By placing the jet in the field of a

lantern and projecting an enlarged image upon a screen (Fig.

31) the curve may be drawn and compared with the parabola

which would be described in a vacuum. In the case of the

curve in the figure, which is from a photograph, the parabolic

trace would pass through the series of crosses.
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56. Universal gravitation: Newton's law.— Any two par-

ticles of matter attract each other with a force F, which is

directly proportional to ^^-, in which m and m' are the masses

of the respective particles, and d is the distance between them.

That is,

F=k mm'
(30)

in which k is the proportionality factor. The factor k is called

the gravitation constant.

Fig. 31

Proposition.— The gravitational action of a spherical body

on an external particle is the same as if all the matter of

the sphere were concentrated at its center. [For proof see

chapter on Electrostatics.]

Corollary.— The mutual action of two spheres is the same as

if each were concentrated at its center. Therefore, if m and m 1

,

equation (30), are the respective masses of two spheres, d the

distance between their centers, then F will be their force of

attraction. If this force F be observed, then k may be calculated.

57. Determination of the mass of the earth.— The force mg,

with which the earth attracts a body of mass m [see equations

16 and 30], is

whence

mg=k

g=k

mm

tn!
(31)
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in which m 1

is the mass of the earth, r is the earth's radius,

and g is the acceleration of gravity. Thus, equation (31)

enables the calculation of m' when k, g, and r are known.

This determination was first made by Cavendish, the difficult

experimental part of his work being the observation of the

extremely small force F
f
equation (30), of attraction of two lead

balls of known mass at a known distance, in order to determine

the quantity k. The method employed by Cavendish is briefly

described in paragraph 108.

Remark.— The law of gravitation was the result of an effort

on the part of Newton to find a common basis for the three

laws of planetary motion already discovered by Kepler. Such

an effort had been made by others without success. To test the

newly formulated law, Newton applied it to the moon with the

following result : The value of g at the surface of the earth

being 980 ^', its value at the moon stated in modern units is

_4000
§ 98o c^n

: according to Newton's law. Art. 56. This
2400002

value of g at the moon must be identical to v of the moon in its

orbit, as determined by equation (32), in which the mean radius

in centimeters of the moon's orbit (240000 miles) is written for

?-, and the reciprocal of the number of seconds in a sidereal

lunar month is written for ;/.



CHAPTER IV.

HARMONIC MOTION; STATICS; ENERGY.

58. Uniform motion in a circle. — Consider a particle P
(Fig. 32) of mass nt%

moving /z revolutions per second in a

circle of radius r. The velocity of P is

v= 2 irnr (a).

From a fixed point O' draw a line O'P'

of length / representing v to the scale

s, so that v= sl {b\ The velocity v is

of constant magnitude and at right an-

gles to OP; hence the point P' rotates

in a circle n revolutions per second at

velocity 2 irnl, which velocity represents

v, so that v= 2 7rns/(c). Substituting from

(b) and (a) in (c), we have

4 7T
2H2

r. (32)

This acceleration of P is continually

directed towards the center of the circu-

lar orbit of P, since the velocity of P' is

continually parallel to PO.

Since 7;
2= 4 irhi2^, equation (32) may be written:

v2

v=—

>

or

V p'

•ig. 32.

(33)

(34)

Equation (34) expresses the radius of curvature of any orbit

at a point in terms of the velocity of the particle at the point,

and the resolved part of v perpendicular to v.

45
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The force F in the direction PO, necessary to keep the

particle in its circular orbit, is from equation (15),

F=4 7r
2n2rm. (35)

59. Simple harmonic motion is the projection on a fixed

straight line of a uniform motion in a circle. Consider a point

P (Fig. 33) moving uni-

formly 11 revolutions per sec-

ond in a circle of radius A.

Let co be the number of

radians per second turned by
B the line OP (co is called the

angular velocity of OP, see

Art. 77); then

co= 2 irn. (36)

Let time be reckoned from

the instant that OP coincides

with OB, and let OP be the

position of the line at time t; then the angle BOP is cot. If

P' be the particle in simple harmonic motion, its distance x

from O f
is

,

. ;

x=Asm cot, (37)

where x is the projection on CD of the rotating line OP.

If time be reckoned from the instant that OP coincides with

OB', then the angle B'OP is cot, and we have

x—A cos cot.

Position of equilibrium. — The point O' is the position of

equilibrium of the vibrating particle P'.

Frequency.— The quantity n is called the frequency of the

vibration of P' ; it is the number of complete vibrations per

second.

Amplitude.— The quantity A, which is the maximum value of

x, is called the amplitude of the vibrations.

Fig. 33.
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Phase. —The value of the angle cot at a given instant is called

the phase of the simple harmonic motion at that instant.

Period. — The time interval, t, which elapses during one com-

plete vibration of P\ is called the period of the vibrations.

It is evident that

T= i (38)
n

or, substituting the value of n from (36), that

T=^L (39)
ft)

Difference in phase. — Consider two particles in simple har-

monic motion, of which the respective displacements, x and x'

,

are the projections, on any fixed line, of the lines OP and OP'

(Fig. 34) rotating at the same angular velocity &> about the

point O, so that the angle 6 remains constant. The angle 6 is

called the difference of phase of the two simple harmonic motions.

It is evident that x=A sin cot and x' =A r

sin (cot+ 0), A and A'

being the lengths of OP and OP' re-

spectively, and the time being reckoned

from the instant at which the line OP
is perpendicular to the fixed line upon

which OP and OP' are projected.

When the angle 6 is zero, the two sim-

ple harmonic motions are said to be in phase; when #= 90°

they are said to be in quadrature, and when 6= 1 8o° they are

said to be in opposition.

60. Harmonic motion and the curve of sines.— If a point P
(Fig. 35) have a vertical harmonic amplitude A, and if the

paper be moved under P in the direction XO, with uniform

velocity, P will describe a curve, the equation of which is

,
j^AtixiZZ (40)

1 '
\ V
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In this equation, distances along the X axis from intersection

to intersection (as a, b) are taken equal to ir, t is the period, and

t has the same significance as in equation (37).

The curve thus produced is the curve of sines. It is the char-

acteristic curve of simple harmonic motion.

Fig. 36.

Illustration. — If a pendulum be mounted above the cylinder

of a chronograph, its oscillations being parallel to the axis of

the latter and in the same vertical plane

(Fig. 36), it may be made to trace a

curve upon the smoked sheet. If the

motion of the cylinder be uniform, this

curve will be a curve of sines. To obtain

such tracings the bob of the pendulum

is provided with a movable stylus the

point of which will remain in contact with

- the cylinder throughout the entire oscilla-
F,g

'

37<
tion (Fig. 37).

It will be shown in the chapters on Sound that similar
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tracings may be obtained with vibrating, rods, wires, and other

sounding bodies.

61. Velocity and acceleration of a particle in simple harmonic

motion. — From equation (37) we find the velocity of the

particle to be

— = coA cos (w/, (41)
dt

and from this we find the acceleration of the particle to be

^=-co2A sin ft>/. (42)

Equation (41) may be written

dx in(W0 (43)

And equation (42) may be written

coA sin
dt

^ = co
2A sin (cot -hir). (44)

Harmonic variable. — Any quantity which varies as the sine

or cosine of a uniformly variable angle is called a harmonic

variable. Since the amplitude, period, frequency, and phase of

any harmonic variable are defined as in the case of simple har-

monic motion, it is evident that the velocity and the acceleration

of a particle in simple harmonic motion are harmonic variables.

The amplitude of — is toA, and it is in quadrature with x; the

(fix .

amplitude of -js is to
2A, and it is in opposition to x. *

62. The force necessary to maintain a particle of mass m in

d2x
simple harmonic motion is F=m—^ (see equation 15), whence

from (42) we have
F= — mco2A sin cot. (45)

Substituting x for A sin cot and — for co, we have, further,
T

F=-$—£-x. (46)
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Hence, if a particle- be so conditioned as to be acted on by a

force,

F=-ax, (47)

in which x is the displacement of the particle from its position of

equilibrium and a is a constant, then if the particle be set moving,

it willperform simple harmonic motion, such that

±^~=^ (48)

in which m is the mass of the particle, and t is the period of its

motion. Since the amplitude of the motion does not appear in

(48), the period r is independent thereof.

63. The superposition and resolution of simple harmonic

motions.

[Superposition of a number of simple harmonic motions of same period

and in the same direction, but of different phases.]

Consider a number of simple harmonic motions of the same

period and of which the displacements, x, x' , and xn , are the

projections of the rotating lines OP, OP', and OP" (Fig. 38).

The motion, of a particle

of which the displacement at

^?-
.^ft each instant is x+x'+x", is

said to be a superposition of

the three simple harmonic
F,g " 38,

motions. From the figure it

is evident that x+x r +x" is at each instant equal to the pro-

jection of the line Ob, which is the vector sum of OP, OP',

and OP". Hence the superposition of the three simple har-

monic motions, x, x', and x" , is itself simply harmonic, and its

amplitude and phase are completely determined by the length

and direction of the line Ob.

Corollary.— Any simple harmonic motion may be resolved

into a number of component simple harmonic motions of the

same period, such that the line, which is the vector sum of the
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lines whose projections represent the displacements of the com-

ponents, is the line of which the projection represents the dis-

placement of the given simple harmonic motion.

Note.— Other cases of the superposition and resolution will be discussed

in the chapters devoted to light and sound.

64. The effect of a force. — The effect of a force upon a

body depends upon

(a) The magnitude of the force.

(b) Its direction.

(c) Its -point of application.

In the study of the action of forces on bodies it is convenient

to distinguish two separate actions of a force corresponding to

the two possible kinds of motion; namely, translatory motion

and rotatory motion.

65. The tendency of a force to produce translation depends

only upon the direction and magnitude of the force, and is the

only effective part oft a force which acts upon a material parti-

clelor upon a body constrained to move without rotation. The
combined tendency of a number of forces to produce translation

is that of their vector sum.

66. First condition of equilibrium. — In order that a num-

ber of forces may have no tendency to produce translatory

motion of a bodysit is necessary and sufficient that their vector

sum be equal to zero (see article 21). This condition requires

the sum of the components of the forces in any direction to be

equal to zero ; so that this first condition of equilibrium may
be formulated thus :

XX =0,

tY =0, (49)

2Z=o.

In these equations X, Y, and Z are the components of the

various forces in the directions of the axes of reference.
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67. The tendency of a force to produce rotatory motion is

called Torque, sometimes called also Moment of Force. The

torque action of a force is the only effective part of a force

which acts upon a rigid body of which one point is fixed. Let

O (Fig. 39) be a fixed point in a rigid

body upon which a force F acts at the

point p. The torque action T of F about

6>is

r=/7sin<9. (50)

It is the vector part of the product Fl.

The direction of T as a vector is perpen-

dicular to the plane of F and /; that is,

it is in the direction of the axis about

which the torque tends to turn the body.

This is called the axis of the torque. The

positive direction of the axis of a torque is

considered to be the direction in which a

right-handed screw would move if turned by the torque.

68. Components of torque about the axes of reference. —
Let Tx , T

y , Tz be the components of the torque action of a

force about the x, y, and z axes, respectively, and let X', Y, and

Z be the components of the force, and x, y, and z the co-ordinates

of its point of application. We then have

Fig. 39.

T=Zy- Yz,

1 y= JS.Z Z,Xy

T=Yx- Xy.

(5D

Proof.— Consider only Tz . From Fig. 40 it is evident that

Yx is the torque action of Y about the z axis, and — Xy is the

torque action of X about the z axis, it being considered negative

because it tends clockwise about the z axis.
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69. Representation of a torque by a line.— The line is drawn

in the positive direction of the axis of the torque, and of such

length as to represent the magnitude of the torque to scale.

70. In equation (50), / sin is

the perpendicular distance from the

point O, about which the torque

action of the force is reckoned, to

the line of action of the force. It fol-

lows, therefore, that the torque action

of a force is the same wherever its

point of application may be in its

line of action.

'"AX!3
|Y

X x ,

u

X-AXIS

Fig. 40.

71. The total torque action about a given point of a number of

forces which act upon a body is equal, both in regard to the

direction of its axis and its numerical value, to the vector sum of

the torque actions of the separate forces about that point.

72. Second condition of equilibrium.— In order that a num-

ber of forces may have no tendency to turn a body upon which

they act, it is necessary that the vector sum of the torque actions

of the separate forces about a point be zero.

This requires the sum of the components of the separate torque

actions about each axis of reference to be equal to zero, so that

this condition of equilibrium may be formulated thus :

-X wfr :

-Kg
]

(52)

t(Zy-Yz)=o,

t(Xz-Zx)=o,

l(Yx-Xy)= o.

73. Couple. — A number of forces may satisfy the first con-

dition and not satisfy the second. In this case the forces tend

only to produce rotation, and their action is called a couple.

The total torque action of a number of forces which satisfy

the first condition of equilibrium, i.e. a couple, is the same about
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all points. For proof consider the z component T„ of this total

torque action,

T=t(Yx-Xy). (53)

Let the origin (about which the torque is reckoned) be trans-

ferred to a point of which the *x and y co-ordinates are —a and

— b. Then the x and y co-ordinates of the point of application

of each force are increased by a and b respectively, and TM
becomes

T, = Z[Y(x+a)-X(y + b)-]; (54)

but 2 Y(x+a)=2Yx+ %Ya,

and tX(y+d)=2Xy+XXd.

Since the forces satisfy the first condition, we have

SYa=aSY=o and lXb= b$X=o;

so that S[Y(x+a)-X(y+ b)~]=?(Yx-Xy),

and the torque about the new position of the origin is the same

as that about its old position. It follows therefore, that the

second condition of equilibrium is also sufficient ; for if the first

condition is satisfied and the second condition is satisfied for any

one point, it will be for all. The point about which the torque

action of a number of forces is reckoned is called the origin of

moments, and it may be chosen arbitrarily or with a view to con-

venience in the calculations.

74. Three forces in equilibrium intersect in a point. — Proof:

Consider the projections of the forces in any plane and choose

the origin of moments at the intersection of two of these projec-

tions : then the projection of the other force must pass through

this point, else the torque action of the forces about an axis per-

pendicular to the plane cannot be zero ; the same being true of

any plane, the three forces themselves must intersect in a point.
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75. Any number of forces not in equilibrium acting on a body-

are together equivalent to a single force which is called their

resultant ; except when the forces constitute a couple.— Proof

:

Given a set of forces in equilibrium, omitting one of these forces,

the combined action of the others must be equivalent to an equal

and opposite force having the same line of action. The excep-

tion is also evident, since by omitting one of a set of forces in

equilibrium the others cannot constitute a couple. The magni-

tude and direction of the resultant of a number of forces is

determined as their vector sum. The point of application of the

resultant is determined by the condition that its torque action

about any arbitrary point must be equal to the total torque

action of the given forces about that point.

76. The center of mass of a body is the point of application of

the resultant of the parallel forces with which gravity acts upon

the particles of the body. — Proof: Let the origin of co-ordi-

nates O (Fig. 41) be chosen at the

center of mass, let the X axis be

downwards. The force acting on

a particle Am is Am • g, g being

the acceleration of gravity, and the

torque action of this force about

the z axis is Am-g-y. The total

torque action of the forces on all

the particles is g£yAm, which from

equation (19) is zero, so that the Fi s- 41 -

torque action of the resultant about the center of mass must be

zero, and consequently the resultant must pass through that point.

77. The angular velocity » of a body is the limiting value of

—, in which A</> is the angle turned by the body about its axis

of rotation in time At. Angular velocity is expressed in radians

per second. If co is constant, then (o= 2tm, equation (36), in

which n is the number of revolutions per second. This is evi-
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dent from the fact that there are 2 it radians in one complete

turn. The dimensions of co are — The positive direction of

the axis about which a body rotates is considered to be that

direction in which a right-handed screw would move if turned

with the body. Angular velocity is represented by a line drawn

in the positive direction of the axis of rotation and of such length

as to represent the magnitude of the angular velocity to scale.

The angular acceleration w of a body is the limiting value of

——, in which Ao> is the change in co which takes place during

the interval Aa

78. Motion of a rigid body in a plane A rigid body is one

which suffers no appreciable distortion under the action of force.

A rigid body is said to move in a plane when all points of the

body which lie in the plane remain in it. Consider a rigid body

AB (Fig. 42), moving in the plane of the paper. The position

of the body is completely indicated by the position of the line

AB fixed in the body. This line is called the index line.

Fig. 42. Fig. 43.

79. After any change in the position of a rigid body moving

in a plane, a certain line in the body perpendicular to the plane

is in its initial position, and the given displacement is equivalent

to a rotation about that line as an axis. Let AB and A'B' (Fig.

43) be the positions of the index line before and after the dis-

placement. Join AA' and BB'. Erect perpendiculars from



ROTATION. 57

the middle points of AA' and BB' intersecting at p. From the

similarity of the triangles pAB and pA'B' it is evident that the

same part of the body is at p before and after the displacement,

and that the line through / perpendicular to the paper is the

line about which the body may, by simple rotation, move from

its initial to its final position. The angle A</> of this rotation is

the angle subtended by AA 1 or BB f as seen from/.

80. The instantaneous motion of a rigid body moving in a plane

in any manner, is a motion of rotation about a definite line called

the instantaneous axis of the motion. Let the displacement

shown in Fig. 43 be that which takes place in a short interval

of time At ; then — is the instantaneous angular velocity of

the body and the line through p, perpendicular to the paper, is

the instantaneous axis. During a finite interval of time the mo-

tion of a body may be irregular. Forces, however, never being

infinite, the motion of a body during an interval approaches

uniformity as that interval approaches zero (see equation 15).

Therefore the motion of a body during a short interval of time

is the simplest motion which can produce the actual displace-

ment which occurs during that interval. In its ultimate con-

sequences this fact is called the principle of least action.

81. Composition of angular and linear displacements. — Con-

sider an angular displacement A0 of a body about the point p
(Fig. 44), bringing the point O
to O' ; and a linear displace-

ment A/ parallel and equal to

O'O, bringing O' back to O.

These two displacements are

:quivalent to an angular dis-

placement A<j> about O, bring-

ing Op to Op'. Let the distance

of p from the line 00' be r;

then if A(/> is small, Al=rA<f>.
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82. From Arts. 80 and 81, it follows that the instantaneous

motion of a rigid body in a plane may be resolved into a motion

of rotation at angular velocity —— about an arbitrary point p

and a motion of translation at velocity —, such that — = r—^.

The angular velocity -r— is equal to the angular velocity of the

body at the same instant about the instantaneous axis ; and the

linear velocity— is in a direction perpendicular to a line drawn

from the arbitrary point to the instantaneous axis.

83. Work and energy. — Whenever the point of application

of a force moves in the direction of the force, the force is said

to do work. Let x be the displacement of a particle in the

direction of a force F acting on it ; then the work done is

W=Fx. (55)

If F and x are not parallel, then F = S • Fr (scalar part of

ml
product Fx). The dimensions of work or energy are ——.

84. Units of energy. — The work done by a force of one

dyne working through a distance of one centimeter is called

the erg. The erg is, for most purposes, an inconveniently small

unit, representing, as it does, the amount of work necessary to

lift about q^q gram one centimeter against the attraction of

the earth. A more suitable quantity would be one comparable

in size, for example, to the work done by a force of one kilo-

gram working through a distance of one meter. This quantity,

indeed, has been extensively used as a unit by engineers in

countries where the metric system is in vogue.

A practical unit, which is about one-tenth of the kilogram-

meter, and which has the advantages of being independent of

locality and precisely commensurate with the erg, is the joule.

The joule is defined as io7 ergs. The foot'-pound is the work

done by a force of one pound working through a distance of

one foot.
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85. The rate at which work is done in any case is called

power. From equation (55) we have

dW
_

dt
F dx

dt'

or P = Fv, (56)

in which P is the power developed by a force F acting on a

body moving at velocity v in the direction of the force. If ^
and v are not parallel, then P = S • Fv. The dimensions of

ml'1
power are ——

.

86. Units of power.— The c. g. s. unit of a power is one erg

per second. The practical unit corresponding to the joule is the

watt. It is one joule per second. The horse

power is 550 foot-pounds per second.

The work done by a torque T upon a body,

when it is displaced through an angle </>

about the axis of the torque, is

lV=T<f,. (57)

Proof. — Consider a torque, due to a force

^(Fig. 45), acting continually at right angles

to an arm of length / ; then T = Fl. When
the body is turned through an angle <£, the

point of application of the force will move a

distance <f>l in its own direction, and from

equation (55) W— F<f>l, or W=T$. q.e.d.

Fig. 45.

87. The power developed by a torque acting upon a body

rotating about the axis of the torque is found by differentiating

equation (57), whence

dW= Td$

or

dt dt

P= Tco. (58)
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88. Measurement of power.— Power may be measured in the

following ways

:

(a) By measuring a force and the velocity of the body upon

which it acts. Equation (56) is used to calculate P.

(b) By measuring a torque and the angular velocity of the

body upon which it acts. Equation (58) is used to calculate P.

(c) By measuring an electromotive force and the electric

current which it maintains.

89. The energy of a system of particles.— When a system of

particles by virtue of its state of motion is capable of doing

work, it is said to possess or store energy. Its energy is meas-

ured by the work which it can do.

90. The energy stored in a system by virtue of its velocity

configuration is called its kinetic energy. For example, a mov-

ing train stores energy because of its motion ; a magnetic field

stores energy because of the turbulent motion of the ether

which constitutes the magnetic field.

91. The kinetic energy of a particle is

W=\i,rA (59)

Proof.— The kinetic energy of a particle is measured not

only by the work which it can do when stopped, but also by the

work required to establish its motion. Let a constant force F
act upon a particle of mass m, starting it from rest. This force

will do work on the particle at a rate =/##—- (see equations
dt dt

(15) and (56)); whence dW=mvdv, and W=\mv2
.

The kinetic energy of a system of particles is

W=^mv2
, (60)

the summation being extended to all the particles.

92. The energy stored in a system by virtue of its position

configuration is called the potential energy of the system. For
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example, a weight stores energy by virtue of its position relative

to the earth ; a bent spring contains stored energy by virtue of

its configuration ; an electrical field contains stored energy by

virtue of a distortion or altered configuration of the ether which

constitutes the electrical field.

It is necessary to adopt arbitrarily some certain configuration

of a system, called the zero configuration, for which the potential

energy, l¥ , is an unknown constant, and to reckon the potential

energy of any other configuration as IV plus the work necessary

to change the system from the zero configuration to that con-

figuration.

93. Mutual relation between kinetic and potential energy of a

closed system. — Any change in the kinetic energy of a closed

system is accompanied by an equal and opposite change in the

potential energy of the system. This is evident when we con-

sider that any increase in the kinetic energy of a closed system

must be equal to the work done by the mutual force action

of the particles of the system while those particles are being

displaced ; and that the displacements of the particles bring the

system into a new configuration such that an equal amount of

work must be done against the mutual forces to restore the

system to its initial configuration.

94. The principle of the conservation of energy.—The work

required to change a system from its zero configuration to any

other configuration is completely independent of the inter-

mediate stages through which the system passes. For example,

the energy required to change a gram of water from its freez-

ing-point at atmospheric pressure to its boiling-point at atmos-

pheric pressure is the same whether the water be simply and

ordinarily heated or subjected to any number of chemical and

physical changes in any manner whatever during the process of

bringing it to its boiling-point, work done on the water being

considered positive, and work extracted from the water being

considered negative.
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95. The statement in Article 94 is strictly a part of the defi-

nition of potential energy, since without that statement the

whole of Article 92 is invalid. Keeping this in mind, we see

from Article 93 that the principle of the conservation of energy

may be stated thus : The total energy of a closed system is

constant.

A change in the total energy of any system must be due to

an exchange of energy between that system and another. This

is evident at once if we consider the two systems together as a

closed system.

96. By way of illustration let us consider one of the simplest

cases of the transformation of energy from potential to kinetic

form and vice versa; that, namely, which occurs during the

oscillations of a pendulum. Let the latter consist of a metallic

bob of mass m, suspended from a point O (Fig. 46), around

which it is free to revolve.

When the pendulum has its center of mass at the lowest

point, and coincides with the vertical line Ob0} we may consider

O that it has its zero configuration of

position (Art. 92). Let the stored

potential energy due to that position

\ be IV , and let the bob be raised to b
x

\ by the expenditure of an amount of

\ work
W=Mgx. (61)

_^-' J This work is entirely independent

b Q
a of the path along which M has been

Fig
-
46, carried in order to transfer it from b

to bv The potential energy in the new position is IV + W.

Let the pendulum be now released and allowed to swing.

We may for the moment overlook the resistance of the atmos-

phere, etc., and regard the pendulum as a closed system, the

potential energy of which varies at every quarter oscillation

between W and IV + IV.

/
/

/
/

/
/

/
/

/

/
/

/
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The kinetic energy of the system also varies ; from zero,

when the pendulum reaches its greatest elongation at Ob
1
or Ob2

and comes to rest in what may be called the zero velocity config-

uration, to a maximum at Ob .

To show for further illustration that the decrement of poten-

tial energy during a short interval of time is equal to the simul-

taneous increment of kinetic energy, the pen-

dulum and the attracting earth being considered

a closed system, consider any short element,

AS (Fig. 47), of the path of the bob. Let v

be the velocity of the bob at the instant at

which it enters Upon this element, At the

time interval required for it to pass over the

element, and Av the gain in velocity during

the interval At. Then AS = v • At, and Ax
= AS • sin 6 = v Sin 6 • At. Multiplying Ax
by the weight, mg, of the bob, we have

AW-- msrv Sin 6 • At (62)

Fig. 47.

as the decrement of potential energy during

At. The acceleration v, of the bob in its path

is the component, g sin 6, of g in that direction so that Av=
v • At=gsin 6 • At. The kinetic energy of the bob at the begin-

ning of the interval is J mv*t
and at the end of the interval is

\m(y+ Avf. Therefore, putting g Sin • At for Av we have

A W=mgv sin - At, (63)

as the increment of kinetic energy during At.

Since the changes of kinetic and potential energy during every

short interval compensate for each other, this compensation

must hold for long intervals as well. Therefore the potential

energy, mgx, of the bob at b (Fig. 46), must be equal to the

kinetic energy, ^mv2
, of the bob at b , that is, \mvl= mgx, or

v=V2gx, which is the velocity the bob would gain in falling

freely from b
x
to a.
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In point of fact, a swinging pendulum is not, strictly speak-

ing, a closed system. At every oscillation it imparts energy

;

by atmospheric resistance, if it swings in the air ; by electro-

magnetic induction, if it happens to swing in a magnetic field

and by the frictions of its bearings, to other portions of the

greater system to which it belongs. Finally when it comes to

rest in its zero configuration of position, its total energy is

reduced to the initial value, W .

Further discussion of the pendulum must be deferred until

the principle of the moment of inertia has been considered. It

will be found in Chapter V.



CHAPTER V.

MOMENT OF INERTIA; THE PENDULUM.

97. Moment of inertia.— The kinetic energy If of a rigid

body rotating about a fixed axis is proportional to the square of

its angular velocity, co. For the linear velocity of each particle

of the body being proportional to co, the kinetic energy of each

particle, and, therefore, the total kinetic energy, is proportional

to o)
2

. We may, therefore, write

W=\Kco\ (64)

in which j-K is the proportionality factor. The quantity K is

called the moment of inertia of the body about the given axis.

Dependence of moment of inertia upon mass and dimensions of

a body.— Consider a rigid body (Fig. 48) rotating about the

axis p, perpendicular to the paper, at an

angular velocity co. The linear velocity

v of a particle Am, distant r from p, is

v= i'co, and the kinetic energy of this par-

ticle is ^Amr2
co

2
, so that the total kinetic

energy of the body is W—^co^i^Am.
Comparing this with (64), we find

K=Lr2Am.

m,
98. Radius of gyration.— Let — be the mass of each particle

of the body, m being its total mass and n a large number.
m 1

Writing — for Am in (65), we have K=m-^r2
'. Putting

1 n

we have K=mr
1
2

. (67)

f 65
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The length i\ is called the radius of gyration of the body ; it

is equal by (66) to the square root of the average square of the

distances of the various particles (of equal mass) of the body

from the axis.

99. Relation between moments of inertia about parallel axes.

— Let K be the moment of inertia of a body of mass m about

a given axis passing through the center of mass of the body,

and K' its moment of inertia about another axis parallel thereto

and distant a from the center of mass ; then

K' =K+a2
:in. (68)

Proof. — Let C (Fig. 49) be the center of mass of the body

chosen as the origin of co-ordinates, and let p be the axis, per-

pendicular to the paper, about which

K' is reckoned. Consider a particle

Am,, distant r from C, distant r' from /,

and of which the co-ordinates are x y.

We have r!2= i
/2+a2— 2 ra cos

<f>,
and

K' = S/2A;;/ (65) ; whence

Kf = 1i2Am + a^LAm — 2 aLr cos $Am.

From (65) we have K = Itt^Atn ; also

cFtAm = ahn, and Srcos cf>Am = l*xAm = o from equation (19).

The following are the moments of inertia of some regular

solids :
—

Body.

Sphere (axis a diameter) . . ...
Cylinder (axis is the axis of figure) . . .

Ring (axis the axis of figure, i.e. through center and per-

pendicular to plane of ring
;

[re and rt are outer and

inner radii]) ........
Rod (axis at end and perpendicular to the axis of figure

;

[1 = length of rod])

Cone (axis the axis of figure; [r is the radius at the base]),

Value of K.

?-mr2

. r2m—
2
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100. Relation between torque and angular acceleration. — In

equation (64), K being constant, if g> is changing, we may

write —— = K— • a>. Comparing this with equation (58), and re-

membering that —— is here the rate at which work is done on
at

the body to cause a> to change, we have T=K—t
or

at

T=Ku. (69)

The product Kco is called the angular momentum of the body.

Equation (69) shows that the torque which acts upon a body is

equal to the rate at which its angular momentum changes ; also

that the angular momentum of a body is constant when no

torque acts upon it.

101. Simple harmonic rotary motion. — When a body moves

in such a way that its angular displacement </> (about a fixed

axis), from its position of equilibrium, is proportional to the sine

or cosine of a uniformly variable angle, the body is said to. per-

form simple harmonic motion. All equations and propositions

for simple harmonic linear motion hold in the present case, pro-

vided that we write angular displacement
<f>

for linear displace-

ment x, angular velocity and acceleration for linear velocity and

acceleration, and moment of inertia for mass. Hence we have

the following proposition from Art. 62 :

Proposition.— Let a body be so conditioned that when turned

through an angle cj> from its position of equilibrium, it is urged

back by a torque,

T=-b<b, (70)

in which b is a constant ; then, if the body be started, it will

vibrate in such a way that

*=?-* (7D

in which K is the moment of inertia of the body about the axis

of its motion, and t is the period of its vibrations.
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102. Kinematics of a rigid body with one point fixed.

Proposition.— If a rigid body having a fixed point be dis-

placed in any manner whatever, a certain line in the body will

be in its initial position, and the given displacement will be

equivalent to a rotation about this line as an axis.

Proof. — Consider a spherical shell ' of the body having its

center at the fixed point. If AB (Fig. 50) be an arc of a great

circle on this sphere, the position of

AB fixes the position of the body, and

AB is called the index line. Let the

movement of the body bring AB to

A'B'. Connect AA' and BB' by arcs

of great circles. Draw great circles

bisecting AA' and BB' at right angles.

The point p so determined has the

same position relative to AB as to

A line drawn from the center of the sphere to p is

thus the axis about which the given movement can be produced

by rotation.

Corollary. — The instantaneous motion of a rigid body about

a fixed point is a motion of simple rotation at a definite angular

velocity about a definite line, called the instantaneous axis of the

motion.

Fig. 50.

A'B'

103. Kinematics of a rigid body entirely free.

Proposition.— Any displacement of a rigid body is equivalent

A to a translation along a certain line, combined

with a rotation about that line as an axis.

This is called a screw displacement.

P*-

104. The gyroscope. — Consider a body

rotating rapidly at a constant angular velocity
"*T

co about its axis of symmetry OP (Fig. 51),

this axis at the same time turning slowly about

O in the direction of the arrow A. Let the line OP represent

OL-
Fig. 51



MOMENT OF INERTIA. 69

the angular momentum Kco of the rotating body to scale. Then

the velocity of P will represent the rate at which the angular

momentum of the body changes, viz. the torque acting upon

the body. Hence the body will move in the prescribed manner

if set moving about its axis of symmetry, and then acted upon

by a torque, the axis OT of which is continually at right angles

to OP.

This action of the gyroscope is explained directly by consid-

ering the motion of the particles of the rotating body.

Consider a circular disk (Fig. 52) rotating rapidly in the direc-

tion ef, at an angular velocity co, about an axis O perpendicular

to the plane of the disk. Sup-

pose this axis to turn slowly

at an angular velocity co' about

the fixed line AB, in such direc-

tion as to bring the limb C of

the disk towards the observer.

Consider the velocity v of the

successive particles as they

pass the point P. If the axis

O of the disk were stationary,

this velocity v would be con-

stant both in magnitude and

direction ; but since the axis O
turns about AB, v changes. If

we draw a line O'P' represent-

ing v to scale, this line O'P'

will sweep round a circular Fi ?- 52 -

cone at regular velocity co' . The velocity of the point P'

in the diagram is towards the observer, and represents v to the

same scale that O'P' represents v ; hence v = co'v cos 6. Sub-

stituting cor for v, and multiplying by the mass of the particle

at P, Am, we have A^= co
1

cor cos 6Am, which is the force, aside

from such force as keeps the particle in its circular path, neces-

sarily acting on the particles as they pass through P. These
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forces AF are all towards the observer above DC, and away

from the observer below DC, and therefore their resultant is

a torque about the axis DC.

105. The torsion pendulum.— A body hung by a wire is in

equilibrium when the wire is untwisted. When turned through

an angle
<f>
from its position of equilibrium, about the wire as an

axis, the body will be urged back by a torque T which is pro-

portional to
<f>,

so that we have

T=—b$. (70 bis)

The quantity b is called the constant of torsion of the wire.

See Art. 1 56. If the body be started, it will vibrate in such a

way that

(71 bis)
^K

=Bt

in which K is the moment of inertia of the body, and t is the

period of its vibrations. The balance wheel of a watch is a

torsion pendulum, the governing

torque being due to the hair spring.

106. The torsion pendulum in the

experimental study of moments of

inertia.— In case b is known, by

previous experiments with the same

wire and a suspended weight the

moment of inertia of which is known,

we may, after determining t, compute

K from equation (71).

By this method the various state-

ments and principles given in Arts. 97
to 99 may be empirically verified.

Example.— If a cylindrical weight

(A (Fig. 53) is suspended from a vertical

1 1 wire, the axis of its motion being the

Fig. 53. axis of the cylinder, and if the nature
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of the suspension be such that this motion can take place only

by virtue of the twisting of the wire, the arrangement will con-

stitute a torsion pendulum.

Suppose it be required to find the ratio of the length of a

homogeneous cylinder to its radius, such that the period of

oscillation will be the same whether the axis of gyration be the

axis of figure or perpendicular to the same and passing through

the center of the mass.

In the former case

Ki=j-*2
, (72)

where R is the radius of the cylinder and the radius of gyration

is

R

In the latter case

X%-&<P+3#)k (73)

where L is the length of the cylinder.

From equation (71) we have as the condition of equality of

period, K
X
= K^

The radius of gyration in the latter case is

^\
L

1 1D2_A

a value identical with the above.

If a weight of the form described be suspended in the two

positions, the identity of values of the moments may readily be

verified.
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107. The torsion pendulum in the determination of the constant

of torsion. — In this case b is the unknown quantity. A weight

of known moment of inertia is suspended by means of the wire

the torsional elasticity of which is to be tested, and the period

is observed. If the length and radius of the wire are also

measured, the torsional coefficients for the material of which

the wire is composed may be computed as well as the value of

the constant of torsion (b) for the individual wire. (See further,

paragraphs 152 et seg.)

108. The torsion pendulum in the measurement of small forces.

— When used for this purpose, the torsion pendulum is called a

torsion balance. With such an instrument, the essential features

Fig. 54.

of which are depicted in Fig. 54, Coulomb (1 785-1 788) investi-

gated the laws of electrostatic attraction and repulsion and the

mutual actions of magnets.

The method of using the torsion balance consists in twisting

the suspension wire at the upper end until the torque exerted
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upon the attracted or repelled body m
x
is balanced. The angle

through which the wire is twisted is measured. This is propor-

tional to the force thus exerted (Eq. 70). The proportionality

factor b is determined by suspending from the wire a weight of

known moment of inertia and observing the period of oscillation.

Cavendish's experiments. — The most notable instance of the

use of the torsion balance was in the celebrated experiments of

Cavendish* (1798), upon the den-

sity of the earth. (See Art. 57.)

Cavendish's apparatus consisted

of a torsion balance (Fig. 55) in

which two leaden balls at the end

of equal lever arms were sus-

pended by a long wire. The mass

of each of these in the original

experiment was 730 grams. When
two larger spheres of lead, each of

which weighed 158,000 grams, were brought near, the gravi-

tational attraction was sufficient to produce a measurable deflec-

tion of the suspended balls.

The masses and the distances between their centers of mass

being known, also the distance to the center of the earth, a com-

parison of the force indicated by the torsion balance with that

exerted by the earth upon the suspended

Fig. 55.

o
Fig. 56.

balls, sufficed for the computation of the /

mass of the latter, and indirectly of its

mean density.

If m
1
and m

2
(Fig. 56) be the masses of the leaden spheres

brought into proximity, and d be the distance between them,

we have

F=k-
J*

where k is the gravitational constant; compare Eq. 30.

Repeated by Bailly (1842), Reich (1852), Cornu and Bailie (1878)
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The earth's force upon m
x

is, however (see Art. 57)

. Mm,
(75)

and
F m2r*

where M is the mass of the earth, and r is its radius.

Boys* experiment.— The very remarkable elastic properties

of filaments drawn from fused quartz, a discovery which we

owe to the English physicist Boys, has made it possible to

repeat the Cavendish experiment with very much smaller

masses.

By means of a torsion balance with a long and very fine quartz

fiber, Boys was able to show distinctly the gravitational forces

between two masses of metal of the size of ordinary bullets.

ph

109. The gravity pendulum.— Consider a rigid body of mass

m suspended so as to be free to turn about a

horizontal axis p. Let C (Fig. 57) be the
*

center of mass of the body, vertically below p,

\ when the body is in equilibrium. Let the

' \ body be turned to one side through the angle 0.

\ The torque T tending to bring the body back

\ into its vertical position is

\C*
T = — mgx sin (/>, (76)

in which x is the distance pC. When </> is small,

then sin</> = <j>, and equation (76) becomes

Fig. 57.

mg
T = — mgxcf). (77)

Comparing this with equations (70) and (71), we find that

(73)
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in which K is the moment of inertia of the body about the

axis p, t is the period of its vibrations, and g is the acceleration

of gravity. A rigid body suspended in this manner is called a

gravity pendulum or simply a pendulum.

110. The equivalent length of a pendulum.— Imagine the pen-

dulum just described to consist of a small bob of mass m sus-

pended by a thin rod of length / and of which the mass is

negligible. Then K — ml2 from (65), and equation (78), when

solved for /, becomes

47P1

Such a pendulum is called a simple pendulum. The quantity

—^2 is for any pendulum called its equivalent length. Solving

tV
equation (78) for —£a we have

47J"

/=—

,

(80)mx
in which / is the equivalent length of the pendulum. The
point in the line pC (Fig. 57) at a distance of / from/ is called

the center of oscillation of the pendulum. This point is also

called the center of percussion, for the reason that if the pendu-

lum is started or stopped by a force applied at this point, no

side force is produced on the axis.

111. The reversion pendulum. Determination of gravity.—
Consider a body of mass m, its center of mass at O, Fig. 58.

Let 0\ O and O" be co-linear points, let r' and r" be the vibra-

tion periods of the body swung as a pendulum from O' and O"
respectively, and let K, K\ and K" be the moments of inertia

of the body about O
y 0\ and O" respectively. From equation

(78) we have

*-—- =mgx (1)

and 4^K" _
j 12

mgy. (ii)
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From equation (68) we have

K> = K + x2m
y (iii)

K" = K+j?m. (iv)

Substituting these values of K' and K" in (i) and (ii),

we have

4 7r
2(K + x2m)

j-i

and
4ir2(K + y2ni)

."2

mgx

mgy.

K
0„

Fig. 58.

If T' = T f

zero, giving

Eliminating — from (v) and (vi), we havem
4 **(**->') _

xt>* -y7m

(v)

(vi)

(8i)

we may cancel (x — y), if (x — y) is not equal to

4772 (.r+j/)
j-i g- (82)

(i) If the pendulum has been adjusted, by repeated trial, so

that t' = r
,r

, then equation (82) enables the calculation of g
when [x + y) and t' have been observed.

(2) If the pendulum has not been adjusted, equation (81)

enables the calculation of g when x, y, t', and t" have been

observed.

(3) If the pendulum has been roughly adjusted so that r'

and t" are nearly equal, then equal and opposite errors in x
and y very nearly annul each other in their influence upon the

value of g as calculated by equation (81). Therefore, equation

(81) gives g very accurately when r' and t" are nearly equal,

(x + y) being measured with great accuracy and x measured

roughly ; the value of y being taken from (x + y) — x so that

its error may counteract the error due to the roughly deter-

mined value of x. The position of the center of mass, O, is

found with sufficient precision for this rough measurement

of x, by balancing the pendulum horizontally on a knife

edge.
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This method for determining gravity was first used by Kater,

see Art. 115.

Note.— When x — y equation (81) becomes indeterminate - = g, and in

this case equation (82) is not necessarily true, since it has been derived from

(81) by cancelling (x — y), which is zero.

112. Conjugate relation between point of support and center of

oscillation of a pendulum.— Solving equation (82) for x+y
and putting t for the common value of t' and t" we have

TV /V
—\ which being identical to / = —^ (79), shows thatx+y
47T' 47T

O is the center of oscillation of the pendulum when O' is the

point of support and vice versa.

113. Identity of center of oscillation and center of percussion

of a pendulum.— Consider a pendulum suspended at o', Fig. 59,

with its center of mass at o distant x below o', and its center of

percussion at o" distant / below o'. If the pendulum turns

about o' at angular velocity g>, then v= rco r

is the linear velocity of a particle km of O'l

the pendulum distant r below o', and

i<— r(D is the acceleration of this particle, so

that F=Am • v= roo • Am is the side force

necessarily acting upon the particle Am.

Similar forces must act on all the particles

of the pendulum. The resultant of all

such forces must pass through the center
~

of percussion, for that is, by definition, the

point at which a single force acting upon

the pendulum will start it moving ; there-

fore the total torque action of these

forces about o" must be zero. That is,

2 (/— r)rco • Am = o, or /2r • Am = Xr^Am.

But 1r2A7n =K is the moment of inertia of

the pendulum about o' and Xr- Am =mx
from equation (18), ;// being the total mass Fig. 59.

0"

-A- .Am
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of the pendulum. Therefore lmx=K. or /=— which beingmx &

identical to equation (80) shows that o" is also the center of

oscillations of the pendulum.

114. Experimental verification of the law of the pendulum.—
Equation (79) embodies what are often called the laws of the

pendulum: viz. the relations, r2 : /, and t2 : — From the absence

of any factor depending upon the amplitude, the additional

law of isochrojtism, said to have been discovered by Galileo by

means of observations upon a swinging lamp in the cathedral

of Pisa (1583), maybe inferred. Galileo's law of equal times

is an approximation. It is in accordance with equation (79), but

that equation is based upon the assumption, true only for an

infinitesimal arc, that sin
<fi
=

<f>.
Where the amplitude is small

but measurable, a closer approximation to the true value is

obtained by the introduction of a correction factor; equation

(79) solved for t taking the form *

, («$ <»
The approximate validity of the law of

equal times is readily verified by obser-

vations upon a pendulum of any form

;

while the relation r2 : / may be verified

by comparing the periods of two simple

pendulums, one of which is adjustable

as to length.

To test the relation t2
:g9

an appara-

tus devised by Mach is frequently used.

It consists of a pendulum (Fig. 60),

the axis of support of which can be

inclined at an angle with the horizon.

When the line joining the axis of sup-

t = 2 ir\-.

Fig. 60.

* The full form is

«&i+Q) 2 sin2 - +
\2 • 4/ 2 \ 2 * 4 *•* 2n I 2 J
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port and the center of oscillation makes an angle a with the

vertical, the force under which the pendulum acts is

f=gcosa,

and the equation of the pendulum becomes

t\-
/

gcosa

115.- Determination of the acceleration of gravity by means of

the pendulum.

Bordas Method.— The period t of a pendulum of simple

geometrical form, such that its moment of inertia may be com-

puted, is observed, and g is calculated by means of equation

(78>

The apparatus employed by Borda, who made the earliest

precise determinations of gravity (at Paris, 1792), consisted of a

pendulum with a spherical bob mounted directly in front of

the pendulum of a clock the rate of which was known. By

observation of the times when the two pendulums, which were

nearly of the same length, were in coincidence, the ratio of the

periods was determined with great accuracy.

The total length of the pendulum was determined by bringing

up an adjustable platform from below until tangent with the bob,

and measuring its distance from the axis of support. This

' distance, less the radius of the bob, gave the length (x) to center

of mass.

The moment of inertia K of a sphere, about an axis at a

distance x from the center of mass, is

K=M(%R2+x2
),

where R is the radius of the b6b. Knowing thus the value of

— and of x and r, g may be calculated from equation (78).

The method of determining the period of a pendulum, referred

to above, is called the method of coincidences. Where the pendu-
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lums to be compared have nearly the same rate and the obser-

vations can be continued over several hours, it is one

of the most exact of all processes of physical meas-

urement. It is, for example, a simple matter to

obtain the relative period to within the millionth of

a second.

Kater s Method.— The principle of the reversibility

of the centers of support and oscillation, discovered

by the Dutch mathematician Huyghens, in the seven-

teenth century, was first utilized in the determination

of gravity by Kater (1818). See Arts, in and 112.

The reversible pendulum (Fig. 61) has two sets of

adjustable knife edges. If, when it is suspended from

one of these (aa), the other (bb) passes through the

center of oscillation, the pendulum may be reversed

and suspended from bb, without altering the period.

The distance from aa to bb is then the equivalent

length. The distribution of mass is adjusted by suc-

cessive trials until the above condition is accurately
Fig. 61.

J

fulfilled.

The advantage of the method lies in the fact that / is a quan-

tity capable of direct measurement.

After adjustment the period is finally determined by the

method of coincidences, or by automatic record upon a chrono-

graph.

In its best form, the reversible pendulum is so designed as

to be symmetrical in shape, with the knife edges disposed at

nearly equal distances from the center of volume. The influ-

ence of the surrounding air will then be the same, whether

the pendulum is suspended from aa or from bb. The form,

moreover, should be that of some simple geometrical figure

for which the influence of the atmosphere (a very small but

an appreciable effect) can be computed. In the most refined

determinations the pendulum swings in an air-tight chamber,
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n

%M

n
Fig. 62.

the atmosphere within which is maintained at a constant pres-

sure.

The above considerations have led to the

abandonment of the earlier form of pendulum

(Fig. 61) in favor of that shown in Fig. 62.

The latter is a hollow cylinder with rounded

ends. One end is loaded so that the center

of mass does not correspond with the center

of volume.

For the purposes of the relative measure-

ment of gravitation, i.e. for the comparison of

this quantity in various localities with its value

at some station where g is accurately known,

small non-reversible pendulums of the form

shown in Figs. 63 and 64 are used.* Their

period is \ second, or even \ second. The

apparatus for the determination of g is thus

reduced to an easily portable size.

Fir'. 63.

Fig. 64.

Value of g in various parts of the surface of the earth.—
The value of the acceleration due to gravity in a number of

localities being given, it is possible to construct a formula, based

upon our knowledge of the dimensions of the earth and of its

motion, by means of which g may be computed for other places.

The following equation gives a result as accurate as can be

expected from any expression which does not take cognizance

of local irregularities and of the lack of homogeneity in the

crust of the earth :

g = 978.07 4- 508 sin2 X — 0,000,003 h, (84)

where g is the value of g at any point the latitude of which

is X, and its height above the sea in centimeters is // (978.07 is

the value taken for^- at level of the sea at the equator).

See Mendenhall, Report of U. S. Coast and Geodetic Survey, 1891, II. p. 504;

also G. R. Putnam, Bulletin, vol. xiii., Philos. Society of Washington, p. 31.
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Observations of the value of g have been made in many places

by the method of reversible pendulum. The results obtained

vary from those given by Equation (84), on account of the

lack of homogeneity of the earth. The proximity of mountain

chains and of the deep sea are the chief sources of irregularity,

and it is at stations where such causes of variation occur that

the largest discrepancies have been noted.

The following are some of the results of the experimental

determination of g:

TABLE I.

Value of G
Locality. Latitude. Longitude. Elevation. (not

reduced to
sea-level).

Boston, Mass 42°2i'33" 7 i° 03' 50" 22 meters 980.382

Philadelphia, Pa. . 39° 57' 06" 75 11' 40" 16 " 980.182

Washington, D. C. 38° 53' 20" 77 01' 32" 10 " 980.100

Ithaca, N. Y. . . 42 27' 04" 76 29' 00" 247 " 980.286

Cleveland, 0. . . 41° 30' 22" 8i°36'38" 210 " 980.227

Cincinnati, 0. . . 39 08' 20" 84 25' 20" 245 " 979.990

Terre Haute, Ind. 39 28' 42" 87° 23' 49" 151 " 980.058

Chicago, 111. . . 41° 47' 25'' 87
°
36'o3" 182 " 980.264

St. Louis, Mo. . . 38° 38' 03" 90 12' 13" 154 " 979.987

Kansas City, Mo. . 39° 05' 50" 94 35' 21" 278 " 979.976

Denver, Col. 39° 40' 36" 104 56' 55" 1638 " 979-595

San Francisco, Cal. 37 47' 00" 122° 26' OO" 114 " 979-95

1

Greenwich . . . 51 29' 00" o° 00' 00" 47 " 981.170

Paris 48°5o'ii" 2° 20' 15" 72 " 980.960

Berlin .... 52°3<y 16" 13° 23' 44" 35 " 981.240

Vienna .... 48° 12' 35" 16 22' 55" 150 " 980.852

Rome .... 4i° 53' 53" 12° 28' 45" 53 " 980.312

Hammerfest . . 70 40' 00" 22° 38' OO" 982.580



CHAPTER VI.

ELASTICITY; FRICTION OF SOLIDS.

116. Stress and strain. — When external forces act upon a

body and tend to change its shape, internal forces are brought

into action between contiguous parts of the body throughout.

This force action between contiguous parts of a body is called

stress.

A body under stress is always distorted ; such distortion is

called strain.

Strain.

117. Principal stretches of a strain.*— A small spherical por-

tion of a body becomes an ellipsoid when the body is strained, f

A distortion which changes a sphere into an ellipsoid is

always equivalent to three mutually perpendicular stretches,

parallel, if there has been no rotation, to the axes of the result-

ing ellipsoid.$ A stretch here signifies a uniform increase (or

* Sometimes called principal dilatations.

t Proof.— Let the origin of co-ordinates be chosen at the center of the small

spherical portion of the body. Let x2 + y2 + z2 = r2 be the equation to the surface

of this small sphere. Let x', y', and z' be the co-ordinates of the point xyz after

strain. If there is no rupture in the neighborhood, x', y' and z' are continuous func-

tions of x, y, and z, and may each be expanded in a series of ascending powers of

x, y, and z. Since x, y, and 2 are very small, squares and higher powers may be

neglected, giving

x' = a
x
x + b

xy -f ^2,

y = a
2
x + b

2y -j- c
2
z,

z' = a
zx + b

zy + c3z,

in which the a's, tfs and c's are constants. These equations transform the equation

to the small sphere into an equation still of the second degree, which can be shown to

be the equation to an ellipsoid.

X This proposition is a generalization of the one to the effect that the distortion

which changes a circle to an ellipse is always equivalent to two mutually perpendicu-

lar stretches.

83



84 ELEMENTS OF PHYSICS.

decrease) in the linear dimensions of a body in a certain direc-

tion. Let i : i + a be the ratio of increase of linear dimensions

of a body in the direction of a stretch. The quantity a is

adopted as the measure of the stretch. The three stretches of

a strain are here represented by a, /3, and 7.

118. The strain ellipsoid. — The semiaxes of the actual

ellipsoid into which a small spherical portion of radius, r, of a

body is distorted by a strain, are (1 +«)r, (1 +/3)r, and (1 +y)r.

An ellipsoid, similarly related to a sphere of unit radius, having

semiaxes (i-fa), (i+fi), and (1+7) parallel to the respective

axes of the small ellipsoid, is called the strain ellipsoid. This

strain ellipsoid in its relation to the unit sphere is a complete

geometrical representation of the distortion of the small

spherical portion of the body.

Axes of strain. — The directions of the stretches of a strain

or of the axes of the strain ellipsoid are called the axes of the

strain.

119. Homogeneous strains. — A body is said to be homoge-

neously strained when the strain ellipsoids in all parts of a body

are similar and similarly placed. A stretched wire is homoge-

neously strained. A bent beam and a twisted wire are examples

of non-homogeneous strain.

Remark.— All that is here said of stress and strain applies

either to finite portions of bodies homogeneously stressed or

strained, or to the smaller parts of bodies non-homogeneously

stressed or strained.

120. Distortion of a cubical portion of a body. — A cubical

portion of a body becomes, after the strain, a parallelopiped.

If the edges of the cube are parallel to the axes of the strain,

the parallelopiped will be rectangular, otherwise not.

121. Specification of strain.—A strain unaccompanied by rota-

tion is completely specified by its stretches «, /3, and 7, together

with the three angles necessary to specify their directions.
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Stress.

85

122. Stress on a section.— Imagine a small plane area AS,

called a section, in the interior of a body under stress. The

portions of the body on the two sides of this section act on

each other in a certain direction with a force AF The quotient

—- is called the stress on the section. When AF is perpen-

dicular to AS, the stress is called a normal stress. When AF
lies in the plane of AS, the stress is called a tangential stress.

When AF is in any other direction, the stress on the section can

be resolved into normal and tangential components.

123. Homogeneous stress. — A body is said to be under homo-

geneous stress when the stress on all parallel sections is the

same in magnitude and direction. The stress in a stretched

wire is homogeneous ; the stress in a twisted wire is non-homo-

geneous.

124. Principal sections of a stress; Pulls of a stress. — The

conditions of equilibrium of a small portion of a body, as ex-

pressed by equations (52), lead * to the result that at a point in

a body under stress there must be three mutually perpendicular

sections upon which the stress is normal. That is, the stress in

the neighborhood of a point in a body consists of three mutually

perpendicular pulls. \ These three sections are called the

principal sections of the stress, and the three pulls are called

the elements of the stress.

125. Axes of a stress.— The directions of the three pulls of a

stress are called the axes of the stress.

* For details of proof see Ency. Brit., 9th ed., Theory of Elasticity, Chap. III.

— Sir W. Thomson.

fThe word pull here signifies a normal stress on a section that is force per unit

area, a push being considered a negative pull.
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126. Specification of stress. —A stress is completely specified

by its three pulls, together with the three angles necessary to

specify their directions.

127. Problem.— To find the stress on any section when the

stress is specified as above, and the direction of the normal to

the given section is specified. Let XYZ (Fig. 65) be the axes

of the stress
; f, g, and h the pulls parallel to X, Y, and Z

respectively; XYZ the given section of area q. Let /, m, and

n be the angles between the normal to the given section, and

the axes X, Y, and Z respectively. Consider the material inside

the tetrahedron XYZO. It is in equilibrium; therefore (equa-

tions 49) the forces acting on this

material across the faces YOZ, XOZ,
and XOY, are equal and opposite to

the respective components of the force

V acting across the given section XYZ.

^-X Dividing these components of the force

acting across XYZ by q, we have the

components of the required stress on

XYZ. The areas of YOZ, XOZ, and

XOY are q cos /, q cos ;//, and q cos n

respectively. The forces acting across these faces are —fq cos /,

—gq cos m, and — hq cos n, respectively. Since /, g, and k are

pulls, these forces are considered negative. They are in the

negative directions of the respective axes. The components of

the stress on the section XYZ are, therefore, f cos 1, g cos m, and

h cos n.

Stress ; Strain (Relations of).

128. Isotropy and aelotropy.— A body is said to be isotropic

when it has identically the same physical properties in all direc-

tions ;
otherwise it is said to be aelotropic. Annealed glass,

cast metal, liquids, gases, etc., are isotropic ; rolled metal, wood,

many crystals, etc., are aelotropic.

The axes of stress and strain coincide in isotropic bodies.

Fig. 65.
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This is not true in aelotropic bodies. The discussion of the

theory of the elasticity of aelotropic bodies is beyond the scope

of this text.

129. Hooked law.— The ratio, for a given substance, of a

given type* of stress and strain is a constant. This ratio is

called the elastic modulus of the substance for the given type of

stress and strain.

Remark. — For very small stresses and strains Hooke's law

is necessarily true. As expounded by Hooke, however, it was

thought to hold with accuracy throughout a wide range of stress

and strain. See Art. 156.

Types of Stress and Strain.

130. Hydrostatic pressure. — A hydrostatic pressure is a

stress having its three pulls equal. The common value of these

pulls is adopted as the measure of the hydrostatic pressure.

131. Pascal's principle. — In a substance under hydrostatic

pressure the stress on all sections is normal and of the same

value.

Proof. — In the problem of Art. 127 put/=^= h = p. Then

the components of the stress on the section XVZ become/ cos/,

p cos m> and / cos n, which are evidently the components of a

* Stresses and strains, inasmuch as they depend upon a number of independent

mmerical specifications (see Arts. 121 and 126), are called complex quantities.

Such quantities do not in general conform to the principles of ordinary algebra. If

it is desired to treat complex quantities of a certain kind by means of ordinary

algebra, it is necessary to adopt a number of simple ground forms or types of that

quantity. Any value of the quantity may then be resolved into its ground form

components, each of which is capable of specification by a single numerical specifica-

tion, and conforms in consequence to the principles of ordinary algebra. The points

here raised will become clear in the following discussion of types of stress and

strain. Until this discussion is carefully studied, the above statement of Hooke's

law will not be intelligible, because the student cannot previously grasp the concep-

tion of the ratio — [See the works of Tait, Hamilton, Grassmann, and Klein
strain

on Complex quantity.]
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stress equal to / and which makes angles /, m, and /z with the

axes X, Y, and Z respectively, as does the normal to the section.

Corollary.— A stress such that on no section is there any

tangential stress is a hydrostatic pressure.

132. Isotropic strain.— Isotropic strain is a strain having its

three stretches a, /3, and 7 equal. It is the strain which in

isotropic bodies accompanies hydrostatic pressure.

133. Measure of isotropic strain.— Isotropic strain could be

specified by the common value, z, of «, /9, and 7, but it is cus-
/\<7;

tomary to make use of the ratio -— as its measure ; Av being
v

the change in volume of a portion of the body of which the

initial volume is v.

134. Proposition. — The change of volume per unit volume

f— ) of a body under isotropic strain is equal to three times

the stretch (z) of the body.

Proof. — Consider a cubical portion of the body, the edges

of the cube being of length /. After strain the length of edge

becomes /(i + /). We therefore have v = Is and v 4- Av =
/3 (i -f z

3)=/3 + 3*73
-f- ••• Discarding terms in z

2 and z
3

, we

find directly

..or t> „ j i * t-u ti
hydrostatic pressure

135. Bulk modulus.*— 1 he constant ratio^— ~——
:

—
isotropic strain

for a given substance is called the bulk modulus of that sub-

stance. This ratio is

*A*/ (86)

* The reciprocal of bulk modulus is sometimes called the compressibility of a

substance.
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in which V is the bulk modulus of a substance, v its volume,

and Az> the change in its volume produced by a hydrostatic

pressure p.

136. Shearing stress.— A shearing stress is a stress having

two of its pulls equal and opposite, and the third equal to zero.

The common numerical value of the two pulls is adopted as the

measure of a shearing stress.

Consider a cubical portion ABCD of a body under shearing

stress, the faces of the cube being principal sections of the

stress. The stress on the faces AB and CD (Fig. 66) is a push

Fig. 66.

S, on the faces AC and BD an equal pull. On the faces of

the cube, parallel to the paper, the stress is zero. The plane

ABCD, of the paper, is called the plane of the shearing stress.

137. Proposition. — The stress on the diagonal sections AD
and CB (Fig. 66) is purely tangential and equal to S.

Proof. — Let / be the length of an edge of the cube. Consider

the portion ABD of the cube. It is in equilibrium, and the

resultant of the forces acting across the faces AB and BD,
ignoring sign, is equal to, and has the same line of action as, the
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force acting across the face AD. The area of each AB and

BD is /2
, and of AD is /V2. The resultant of the forces SP

and SI2
, which act across AB and BD is a force lying in the line

AD, and equal to S/W2, which, divided by the area of AD,
gives 5. q.e.d.

138. Shearing strain.— A shearing strain is a strain having

two of its stretches equal and opposite, and the third equal to

zero. It is the strain which in isotropic bodies accompanies

shearing stress.

139. Measure of shearing strain ; Angle of shear.— Let

the heavy line square (Fig. 6j) represent a cubical portion of a

:«

v. s

Fior. 67.

body which is changed under the shearing strain into a rec-

tangular parallelopiped represented by the dotted rectangle.

Dimensions perpendicular to the plane of the paper remain

unaltered. The dotted rhombus is a figure which was square in

the unstrained cube. The angle </>= 6 is called the angle of

the shearing strain and is adopted as the measure of the strain.

140. Proposition.— The angle cf> of a shearing strain is equal

to twice the stretch, a, of the strain.
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Proof.— Let the rhombus eCDB (Fig. 68) be the dotted

rhombus of Fig. 67, turned so that its side DB coincides with

the side of the square from which it was distorted by the strain.

Let / be the length of AD. Then the length of the diagonal AB

e c

1 \
.*; \

1 \j

f

Fig. 68.

is IV2. Since <j> is small, Ae = l<f>, and since Aef is sensibly a

Ae
right triangle with equal legs, Af is equal to —— Further, the

V2
shortened diagonal eB of the rhombus is sensibly equal to

AB—Af therefore the length of the shortened diagonal eB of

the rhombus is /V2 %? From the definition of stretch we

have "

and eB, we have

V2
a= Substituting in this the above values of AB

_i
(87)

141. Slide modulus.*— The constant ratio
sheanng stress

shearing strain

for a given substance is called the slide modulus of that sub-

stance. It is defined by the equation

5
;/=

*'
(88)

in which n is the slide modulus of a substance, and $ is the

angular distortion produced by a shearing stress S.

* Often called coefficient of simple rigidity.
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142. Simple and compound stresses.— Hydrostatic pressure

and shearing stress being chosen as ground-forms or types of

stress, are called simple stresses.* Any stress which is neither

a hydrostatic pressure nor a shearing stress can be resolved in

general into a hydrostatic pressure and two shearing stresses of

which the planes are at right angles. These are called the

simple stress components of the given stress, and the latter is

called a compound stress.

Remark.— Identical statements hold for simple and compound

strain.

143. Longitudinal stress. — A longitudinal stress is a stress

having one pull finite and the other two equal to zero. The
value of the finite pull is adopted as the measure of the stress.

The direction of the finite pull is the only axis of the stress

which is determinate. It is called the axis of the stress.

144. Longitudinal strain.— A longitudinal strain is the strain

which in isotropic bodies accompanies longitudinal stress. All

three stretches of a longitudinal strain are finite. The stretch

in the direction of the axis is adopted as the measure of the

strain. The other two stretches are equal. They are always

opposite in sign to the axial stretch and bear to that stretch

a constant ratio, for a given substance, called Poisson's ratio.

145. Stretch modulus, f
— The constant ratio

longitudinal stress

longitudinal strain

for a given substance is

*'-J".
(89)

* Hydrostatic pressure and shearing stress are chosen as simple types, because

they are Orthogonal ; that is, no work is done upon a body by a hydrostatic pressure

when the body suffers shearing strain, nor by a shearing stress when the body suffers

isotropic strain. See Article, Elasticity, Theory of. Ency. Brit., 9th ed. Sir W.
Thomson.

t Often called Young's modulus.
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in which fi is the stretch produced by a pull P in its own direc-

tion. The ratio E is called the stretch modulus of the substance.

146. The experimental determination of Poisson's ratio.— The
change which the contents of a tube, of inner diameter d (Fig.

69) and length C, suffers when stretched is obviously identical

with the change of volume which a rod, of the same diameter

(d) and length, and composed of the same material as the tube,

undergoes when equally stretched. This fact is used to deter-

mine Poisson's ratio.

An excellent material for such an experiment is glass. A
tube with strong walls is closed at one end, and after it has been

Fig. 69.

UNDER
STRESS

Fig-. 70. Fig. 71.

nearly filled with water or mercury, the other end is drawn out

into a capillary neck. The neck is bent (Fig. 70), to facilitate
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further filling, which is
#
accomplished by successive heatings and

coolings of the tube. After filling until the level of the con-

tained liquid is within the capillary neck, the tube is mounted

vertically as shown in Fig. 71, and weights are applied to

stretch it.

An easily measurable downward movement of the liquid in

the neck indicates increase in the volume of the tube when
stretched. By calibration of the total content and of the con-

tents of the capillary neck, per centimeter length, the change of

volume corresponding to each pull may be determined, whence

the lateral stretch (7) is readily computed. By observing at

the same time the elongation of the tube, for which purpose the

reading microscopes M, M' are used, the longitudinal stretch /3

is determined. The quantity

7

ff
(90)

£3
Fig. 72

(see further Arts. 144 and 147) is Poisson's ratio.

For glass, c, has almost precisely the value (J)

which Poisson himself supposed it to have in the

case of all solids.

Where metals are to be tested, it is necessary

to modify the apparatus, giving it the form of a

tube with heavy caps. Through the upper one,

by which also the tube is fastened, a capillary

neck of glass is inserted. The tube is filled with

liquid, the sinking of the level of which within the

neck where weights are applied to the lower

cap, indicates the increase of volume as already

described. Figure 72 shows this apparatus,

which is that used by Wertheim* in his well-

known experiments. Wertheim deemed his results

confirmatory of Poisson's theoretical conclusion,

i.e. that <r is a constant and equal to ^; but it

* Wertheim, Annales de Chimie et de Physique, (3) 12, p. 385 (1844).
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has since been shown by means of numerous experiments, some

of which are analogous to the above and some of which are

based upon the relations discussed in Art. 147, that Poisson's

ratio varies with the material and with its molecular condition.

147. Relation between bulk, slide, and stretch moduli and

Poisson's ratio.— Longitudinal stress can be resolved into simple

stress components, and the strain accompanying each of these

components V and n, being known, can be calculated from

equations (86) and (88). These strains superposed give the

actual longitudinal strain produced by the given longitudinal

stress. Therefore both the stretch modulus and Poisson's ratio

of a substance must admit of calculation in

terms of the bulk and slide moduli of the

substance ; or, in other words, these four

quantities must satisfy two independent equa-

tions. The following derivation of these

two equations given below follows the above

outline.

Consider a cubical portion of a body under

longitudinal stress P ; for example, a portion

of a stretched rod, as shown in Fig. 73.

Imagine the pull P to consist of three equal

parts, \P
y
and imagine the lateral faces of

the cube to be subjected each to a pull\P
and a push \P. (This supposition is allowable since the pull

and push are together equal to zero.)

Since the pull \ P in all directions constitutes a negative

hydrostatic pressure /, we have

P

Y

) X

/
/

z/

Fig. 73.

P. («)

The pushes on the ^r-faces, together with the pull \ P on the

;j/-faces, constitute a shearing stress

of which the plane is xy.

<T— 1 p (')
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The pushes on the ^-faces together with the remaining pull

on the j/-faces constitute another shear Sf of which the plane is

yz ; so that we have $ __ i p <
c ^

The above are the simple stress components of the longi-

tudinal stress. The hydrostatic pressure {a) produces an isotropic

strain of which the stretch is i in all directions and positive.

From equations 32 =— (85), V= irr (86), and p= ±P(a), we

have v

Each shearing stress (b) and (c) produces a shearing strain of

which the stretches are in each case +« and — a. From equa-

S
4>

tions 2a=
(f> (87), n= — (88), and S=\P (b), we have

611

Since each shearing strain contributes a stretch a in thejj/

direction, the total stretch, /3, in that direction is

$-2*+i (J)

Further, the shearing strains contribute stretches —a in the

x and z directions, respectively ; so that the total lateral stretch

7.is y= i-a. (g)

By definition Poisson's ratio, a, is

a= |. (90 bis)

The equation for stretch modulus is

E=t (89 bis)

Substituting values of i and a from (d) and (e) in (/) and (g)

and the resulting values of and 7 in (90) and (89), we have

-lPh« (9I)a
6F+2«'
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Examples of Stress and Strain.
i

148. Heavy liquid in a vessel.— A horizontal section (SSf of

Fig. 74) of area a at a distance x beneath the surface of a liquid

of density d is acted upon by a force axdg due

to the weight of the liquid above it, g being

the acceleration of gravity. The stress on the

section is therefore xdg, and this must be the

hydrostatic pressure p at the point, so that
\x

p=xdg (93)
j

axdg

If the pressure at the surface of the liquid is L

A. then
p=Po+xdg. (94) ^Hg

.74."

Thus the non-homogeneous hydrostatic pressure is specified

at all points in the liquid in terms of the one co-ordinate x.

149. Stretched wire.—A wire of sectional

area q, held tense by a force F, is under homo-

geneous longitudinal stress P such that

FP= (95)

Let / be the initial length of the wire, and

/+A/ its length under tension, then

/:/+A/=i:i+/3;

A/
/*whence /3= Substituting this value of (3,

and the above value of P in .£= —(89), we

have E= Fl_
(96)

This equation enables the calculation of E
when F, /, q, and A/ have been observed.

The wire to be experimented upon is fastened

at one end to a wall-bracket (Fig. 75) or other Fig. 75.

firm support, and a weight is applied at the free end. The wire

H
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thus rendered vertical and tense is further stretched by the

addition of small weights of known mass.

Reading microscopes are focused upon points a and b near

the upper and the lower ends of the wire. The difference in

the movement of the two measures the elongation A/. The
quantity /, which is the distance ab, is found by direct measure-

ment; while q is computed from the diameter, or from the

density of the material and the weight (per meter) of the wire.

If F be expressed in dynes, / and A/ in centimeters, and q in

square centimeters, equation 96 gives the modulus in c. g. s.

units. The following table contains the value of the stretch

modulus for several materials.

TABLE 11.

Stretch Modulus of Various Materials.

Brass 0.83 x 1012 to 0.97 x io12

Copper 0.98 to 1.0

Gold 0.52 to 0.79

Iron 1.7 to 2.4

Lead 0.15 to 0.18

Platinum 1.5 to 1.

7

Silver 0.7 to 0.71

Zinc 0.85

Glass 0.66 to 0.78

Birch 0.091

Oak 0.092

Poplar 0.05

Spruce o. 1

1

150. Bent beam.*— Consider such a portion of a slightly bent

beam (Fig. j6) as subtends a small angle from its center of

* This discussion of a bent beam, although the one usually given in elementary

treatises on Mechanics, which is accurate enough for most purposes, is incorrect.

This is evident when we consider that the assumed strain, having no lateral stretch,

is not a true longitudinal strain. There is nothing in itself which shows the assumed

distortion of a beam to be impossible, but if the pulls at each point necessary to pro-

duce the assumed simple elongation be calculated, it will be found that the vertical

pulls cannot balance each other in the different parts of the beam, and the particles

of the beam will not therefore be in equilibrium. To calculate the pulls necessary to

produce simple elongation, resolve the simple elongation into an isotropic strain and

two shearing strains; calculate the corresponding stresses and superpose them.
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curvation C. All the filaments of the beam in the short portion

are assumed to be circular and concentric. The filaments in the

upper part of the beam are stretched,

those in the lower part are shortened.

An intermediate filament retains its

initial length. This filament marks the

so-called median line of the beam repre-

sented in the figure by the dotted line.

Let R be the radius of curvature of the

median line ; then R6 is the initial length

of all filaments between AC and BC.

The length of the filament at a distance

x above the median line is (R -\-x)B.

Therefore I : I + = R6 :{R + x)d,

whence /8 =
A'

(97)

in which /? is the stretch of the filament.

Substituting this value of /3 in (89) and solving for P, we have

ExP =
R (98)

In this equation P is the longitudinal stress in that part of the

beam distant x above the median line.

151. Proposition.— The total force action across a complete

section of a bent beam is a torque T about a line /(Fig. 76)

perpendicular to the plane of the

paper, such that

^ 1 azbE
1 = ——

,

12 R (99) A-

in which a is the depth of the

beam and b is its width.

ax

Fig. 77.

Proof. — Let Fig. 77 represent a cross-section of the beam.



IOO ELEMENTS OF PHYSICS.

The force AF acting across the area bAx, of the narrow dotted

strip, is AF= PbAx, or using value of P from (98),

AF= ~xAx
R

The torque AT of this force about the line AB is

AT=— x2Ax,

whence the torque across the complete section is

= EbC
+ '

x2dx
1 aHE
[2 R (100)

152. Twisted wire.— Consider those portions of a twisted

wire which lie in the surface of a cylinder coaxial with the wire

and of radius r— less than the radius of the wire. Let /be the

27TT 2~r

A A'

c ;d
/

B B?

V
Fig. 78.

rt

Fig. 79.

length of the wire, and 6 the angle through which one end of it

is turned. Let Figs. 78 and 79 represent the development of

this cylindrical surface, Fig. 78 before twisting and Fig. 79 after

twisting. The line AB is brought into the position A fB f

, and

the small square is distorted into the rhombus by the twist. The

portions of the wire under consideration are thus subjected to a
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shearing strain, of which the angle </>, as is evident from the

figure, is

(IOI)

Substituting this value of in n = - (88), and solving for 5, we
m

have

5 = nrd

I
' (102)

in which 5 is the shearing stress in the portion of the wire

under consideration. Comparing Fig. 79 with figures in articles

!36, 139, and 140, we see that the stress at a point in a twisted

wire is such that (1) on all sections perpendicular to the axis of

the wire the stress is purely tangential, and perpendicular to the

radius
; (2) on all sections of which the planes include the axis

of the wire the stress is purely tangential and parallel to the

axis of the wire
; (3) on all sections which are perpendicular

to a radius the stress is zero
; (4) on such sections as 5 (Fig. 79)

the stress is a push, and (5) on such sections as Sr (Fig. 79) the

stress is a pull. In every case the value of the stress is that

given by equation (102).

153. Proposition. — The total force action across a complete

section of a twisted wire is a torque T about the axis of the

wire such that

7T7tD
i

T=
2/

(103)

irt which p is the radius of the wire.

Proof. — Let Fig. 80 represent a sectional

view of the wire. Consider the annular

portion of width Ar and radius r shown by

the dotted lines. The force action per unit

area across this annulus is ^— and perpendicular to r at each

Fig. 80.
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point, the area of the annulus being 2 irrAr. The total torque

action across it is

A T= 2 irrAr • —— • r,

whence r-^f>*-=»£
The negative sign is written for the reason that Zand are

opposite in sign.

154. Constant of torsion of a wire (sometimes called moment of

torsion).—The quantity
irnp

, being the quantity which multi-

plied by the angle of twist of a wire gives the twisting torque, is

called the constant of torsion of the wire.

For the determination of this constant, the principle of the

torsion pendulum, already considered (see Arts. 105 et seq.), is

used. A cylindrical or spherical weight, the moment of inertia

of which may be computed from its dimensions and mass (see

Art. 107), is suspended from the wire to be tested and the period

of the torsion pendulum thus formed is determined.

155. The torsion pendulum may likewise be employed in the

determination of the slide modulus (n). See Art. 141.

Comparing

T=-^- 6(103) with T=-b6 (70) and ^^=b (71),

: att2K 7r;zp
4

, xwe have —
-^—=

—

j-t ( I04)

in which K is the moment of inertia, and t the period of vibra-

tion of a body hung by the wire. This equation enables the

calculation of 71 when the other quantities have been determined.

156. In speaking of the elastic properties, bodies are said to

be perfectly elastic when they return, after the removal of stress,

to precisely their former configuration. Solids are perfectly

elastic only when the distortion to which they have been sub-
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jected is slight.* A body is said to be highly elastic when it

possesses a large modulus.

When the distortion to which a body is subject is considerable

enough to render its failure to return measurable, it is said that

the limit of elasticity has been passed.

If the stress, of whatever type, be further increased, a point

is finally reached at which rupture of the distorted body occurs.

This is termed the breaking stress.

157. The experimental investigation of the elastic properties

of matter has brought to light many phenomena, which are not

considered in the preceding discussion. Thus in the case of all

finite stresses, the strain depends upon the length of time during

which the forces are allowed to act.

These progressive effects have been followed over periods of

many years, and it has been found, for example, that a longitu-

dinal pull, far below the breaking stress, will frequently produce

rupture if applied for a sufficient length of time.

JOB
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Fig. 81.

Bodies which have been under continued stress, on the other

hand, require time, and often a very long time, in which to

* See J. O. Thompson, American Journal of Science, Vol. 43, p. 32.
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resume, by continuous readjustment, their ultimate unstrained

configuration. Even the strains which are brought into exist-

ence in such a process as the drawing of wire have been found

to exert a temporary but long-continued influence upon the

elasticity of the metal. In the case of a phosphor bronze wire,

for example, the constant of torsion was found to change from

day to day, at first rapidly, then more and more gradually as

the age of the wire diminished. The effect was distinctly

traceable, although greatly reduced after the lapse of four

years. How regular the law of its decadence was, may be seen

from Fig. 81, in which the period of oscillation is shown as a

function of the time.

158. Temperature also affects the elasticity of solids, as does

indeed every change in the molecular arrangement of a body.

Almost without exception the

effect of a rise of tempera-

ture is to lower the modulus.

Thus the bronze wire, to

which reference has just

been made, when carrying a

certain cylindrical weight

had a period the variation

of which between 3 and io°

is indicated by the curve in

Fig. 82.

The value of the slide mod-

ulus is inversely proportional

to the square of the period

of vibration, see Art. 155, so

that the curve between slide

modulus and temperature, de-

rived from the curve in Fig.

82, is similar to the curve in

Fig. 83. The mean percentage change of slide modulus per

10°

8°
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Fig. 82.
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degree centigrade (temperature coefficient), as derived from

the data shown in Fig. 82, is .00045.

An analogous example, in the case of the stretch modulus, is

shown in (Fig. 83), which gives the curve of variation of stretch-

modulus of a steel wire with temperature between 20 and 160 *

The temperature coefficient in this case is .0005.

Steel Wire

230. x 10
7

g

to
=3
_i

O 226.xl07
g

I
O
H
UJ

fc
222.xl0'g

218. x 107g \.

40° 80° 120° 160"

TEMPERATURE (CENTIGRADE)

Fig. 83.

200°

Potential Energy of Strain.

159. Of longitudinal strain.— Consider a cubical portion,

edge /, of a substance under longitudinal stress P, stretched to

length /+;;/ in the direction of P; m being small. From the

definition of stretch we have 1

dm
i+/3= l : l+m, whence /3= ni

or d^———\ /3 being the measure of the longitudinal strain.

Let P increase slightly, causing a further increase dm in the

length of the cube, and making it, in fact, equal to l+m + dm.

The work dW, done in producing this increment, dm, of length,

is P/2dm, for the area across which the pull P acts is sensibly

* See paper of Miss M. C. Noyes, Physical Review, Vol. II., p. 277.
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/2, and the stretching force PI2 acts through the distance dm.

Therefore dIV=P/2dm = P/s -^=PPd/3. In this expression

write v (volume of cube) for /3 and substitute the value of P
p

from E=~s (89), whence dW=vEfid/3. Since v is sensibly con-

stant, and W is zero when /3 is zero, we have by integration

W=\vE&, (105)

p
or substituting — from (59) for E,

W=\vP$. (106)

160. Of isotropic strain.— Consider a cube under hydrostatic

pressure p, and let i be the stretch in all directions of the

accompanying strain. In a manner similar to the method of

Art. 159, it can be shown that \vpi (compare equation 106) is

the work done by the force acting across each pair of faces of

the cube while the strain is being established. Therefore the

total work done in establishing the strain is § vpi. Substituting

—= 3 i from (8 5 ), we have
v

W=\vp(^, (107)

or, substituting the value of/ from (86), we have

(Av\2w-\*v
\!jy ( io8 )

161. Of shearing strain.— Consider a cube under shearing

stress 5, and let + a and — a be the stretches of the shearing

strain. In a manner similar to the method of Art. 159 it can be

shown that ^ vSa (compare equation 106) is the work done by

each pull of the shearing stress while the strain is being estab-

lished. Therefore the total work done in establishing the strain

is J vS 2 a. Substituting <j> = 2 a from (87), we have

WmlvSi; (109)
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or substituting the value of 5 from equation (88), we have

W=\vn$L
. (no)

Remark.— The potential energy per unit volume at a point in

a strained body is then equal to one-half the product of the stress

into the strain, or to one-half the product of the modulus into the

square of the strain.

162. Friction. — The forces which oppose the tangential

motion of bodies in contact give rise to the phenomena of fric-

tion. These phenomena are very complex on account of the

extreme variety of the ruling conditions, but the following state-

ment (Coulomb's law of friction) covers the ground in the case

of solids sufficiently well for most purposes.

Coefficient of friction.— The tangential force necessary to

cause the sliding of two bodies with their surfaces in contact,

bears an approximately constant ratio to the normal force push-

ing the surfaces together. This ratio is called the coefficient of

friction. It is sensibly independent of the area of contact and

of the velocity of sliding, but depends upon the character of the

surfaces and upon the nature of the bodies, e.g. upon their hard-

ness. This law of friction was first noted by Coulomb (1781).

163. Angle of friction. — Consider two bodies with flat sur-

faces in contact. Let the force F (Fig. 84), with which they

act on each other across the surface of

contact, be inclined at an angle (j> to the

normal to that surface. Then Fcos </> is

the normal force pushing the surfaces

together, and F sin <£ is the tangential

force tending to cause sliding. When
the ratio F sin <j> -r- F cos cf> becomes equal

to the coefficient of friction, p, of the sur-

faces, sliding will take place, therefore

the maximum value of the angle
<f>

is

such that

tan <j> == fi. ( 1 1
1

)

F cos f

F SIN 6

Fig. 84.
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The angle <£ is called the angle of friction, sometimes also

the angle of repose, of the two surfaces.

164. Limitations to Coulomb's law of friction.— The friction

between two surfaces is, no doubt, due in part to a continual

interlocking and release of fine protuberances on the sliding

surfaces and in part to a continual welding together and tearing

apart of the smaller parts of the surfaces as they come into

intimate contact.

When the sliding surfaces are distinctly rough there is no

regularity whatever in the friction. Surfaces which are com-

paratively smooth satisfy the law very closely, especially if they

are of different materials and are not allowed to rest, for at start-

ing the friction is always greater. Very true, clean surfaces of

the same materials when brought into really close contact, can

scarcely be made to slide at all. Glass will not slide on glass if

very clean, provided the two faces have been well pressed

together, so as to exclude the intervening layer of air. If laid

together gently, however, so that an air cushion intervenes, the

same surfaces will be found apparently almost devoid of friction.

In the same way surfaces are lubricated by means of a thick

layer of liquid, sliding with great freedom; but they may be

made to cling almost as though cemented if they are sepa-

rated by a sufficiently thin layer of the same lubricant. In the

former case the friction is merely that which arises from the

viscosity of the lubricant.

165. Experimental determination of the coefficient of friction.

— To measure sliding friction, one of the two following methods

is usually employed

:

(i) Method of the horizontal plane. — Upon the bed AB
(Fig. 85) are placed the two materials, the friction between

which is to be determined. These should be in the form of

blocks with plane faces. One of them, which should present

as long a sliding surface as convenient, is fastened to the bed.
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To the other a horizontal force is applied by means of a cord

running over a pulley and sustaining weights at its free end.

The sliding block, the mass of which must be known, is loaded

with known weights. The normal force pressing the surfaces

together is Mg, where M is the sum of the masses of block and

load. The weights (m), which are applied to the cord, must

Fig. 85.

suffice to maintain the sliding block, once started, in uniform

motion. The force which they then exert upon the vertical

portion of the cord (ing) is that necessary to overcome the

friction of the moving wheel, and the friction of the surfaces

to be tested.

Assuming the former to be negligible, we have for the coeffi-

cient

ma=—
* M (112)

In point of fact, it is necessary to ascertain the correction for

the friction of the wheel, since on account of it the horizontal

pull is less than the vertical by two per cent or more.

By means of this apparatus, if the load M be varied, and

likewise the areas of the surfaces in contact, Coulomb's law is

readily verified.

(2) Method of the inclined plane.— An inclined plane AB
(Fig. 86), the angle of which can be varied at will, serves as a
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bed for the fixed block. Upon this the sliding block with its

load is placed. The angle of the plane is varied until the block,

once started, slides freely with a uniform motion. We then have

the coefficient measured by the tangent of the angle of the

plane (see equation in).

Fig. 86.



CHAPTER VII.

HYDROMECHANICS.

I. Fluids at Rest ; Hydrostatics.

166. Pressure in a fluid.—A fluid is a substance which

when at rest can sustain no stress other than hydrostatic pres-

sure. When it is under hydrostatic pressure, any given plane

of area a, exposed to the fluid, is acted upon by a force F such

that

F=ap, (113)

_ WW/< \ -

•Fig. 87.

in which / is the value of the hydrostatic pressure. That the

force F is normal to the area when the fluid is at rest (Pascal's

principle) has already been shown (Art. 131). It has also been
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shown that in the case of fluids sensibly incomprehensible

(Art. 148) a horizontal section at a distance x below the sur-

face is acted upon by a force axdg, where a is the area, d the

density of the fluid ; and that the pressure at any point in this

section, due to the weight of the liquid above it, is

P xdg. (93 bis)

This principle is usually verified experimentally by means of

Pascal's vases. The apparatus consists of a series of glass

vessels (Fig. 87) varying greatly in form and content, but all of

the same vertical height, and all fitting the same movable base,

which is held in place by suspension from one arm of a balance.

When the pressure / upon the bottom of the vessel over-

balances the sustaining weights in the scale pan at the other

arm, the base is dislodged and the vessel emptied. The experi-

ment consists in showing that whatever be the form of the

Fig. 88.

vessel, this occurs for a given sustaining weight when the liquid

reaches a certain depth.

A better result may be obtained by indicating the pressure at

the bottom of the vessel by means of the distension of an elastic

membrane stretched across the opening in place of the movable
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base. This may be made to act upon a pointer which moves

along a scale (Fig. 88).

167. The law of Boyle and Mariotte.—The relationship be-

tween the volume and pressure of a gas discovered by Boyle

Fig. 89. Fig. 90.

(1662), and independently and more completely established by

Mariotte (1676), is expressed by the equation

pv=C> (114)

in which p and v are pressure and volume, respectively, and C is

a constant.

The following is the statement which corresponds to this

equation ; viz. :

In a true gas the volume is inversely proportioiial to the

pressure to which the gas is subjected.

It is known as Mariotte's (or Boyle's) law. See Arts. 249, 256.
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The experimental verification of Boyle's law is usually per-

formed by means of the apparatus shown in Fig. 89. It

consists of a U-shaped tube, the shorter arm of which is closed.

Through an opening at b mercury from the reservoir m enters

both arms of the tube. By raising and lowering m the height

of the column ending at h
x
can be adjusted. Observations of

the volume of the entrapped air at a, the pressure of which is

always one atmosphere plus that due to the vertical column of

mercury Ji-Ji^ is found to be that required by the law.

For the extension of the experiment to pressures less than one

atmosphere the apparatus is frequently given the form shown

in Fig. 90. It consists of a glass tube it) closed at one end

and inverted in a reservoir of mercury. The inverted tube

likewise contains mercury, but a small amount of air is entrapped

within its upper end. The volume of this enclosed air varies

with the pressure, which is always one atmosphere less that due

to the vertical column of mercury h-Ji^. The latter may be

varied by raising and lowering the tube t, and the variations of

volume thus produced may be observed.

168. Limitations of Boyle's law. — All gases, when subjected

to sufficient pressure under temperature conditions which are

described in Chapter IX are converted into liquids. As

the conditions under which this change of state occurs are

approached, the gas gradually takes on new properties. When
compressed, its loss of volume is greater than would be expected

from Mariotte's law, the divergence from inverse proportion-

ality increasing as we near the point of condensation. Sub-

stances in this intermediate condition preparatory to liquefaction

are called vapors.

Boyle's law applies only to true gases, to gases, that is to

say, which are very far removed, as to their condition, from the

boiling-point or point of liquefaction.

Many substances, such as chlorine (CI), ammonia (NH
3 ),

hydrogen disulphide (H 2 S), sulphur dioxide (S02 ), nitrous
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oxide (N20), and carbon dioxide (C02 ), which assume gaseous

form at ordinary temperatures, are readily liquefied by the appli-

cation of pressures. Thus, at o° C, these substances become

liquid at the pressures indicated in the following table:

TABLE III.

Pressures Necessary to condense Certain Vapors at o° C.

Sulphur dioxide (SO2)

Chlorine (CI) . . .

Ammonia (NH3) . .

1.5 1 atmos.

3.66 "

4.19
-

Hydrogen disulphide (H2S) 10.80 atmos.

Carbon dioxide (CO2) • • 3540 "

Nitrous oxide (N20) . . . 36.08 "

To show that vapors are more compressible than true gases,

two closed glass tubes, tv /
2 , with strong walls (Fig. 91), are filled

respectively with a vapor, such as

ammonia, and nitrogen (or air).

The lower ends of these tubes are

submerged in a closed reservoir of

mercury, the walls of which are of

massive cast iron, and pressure is

applied by means of a compression

pump. The mercury rises in both

tubes as the gaseous contents are

compressed, but it rises faster in

the tube containing the vapor than

in that the contents of which obey

Mariotte's law. Finally, when the

necessary pressure has been reached,

the vapor condenses.

Fig. 91.

169. Pressure in a compressible

fluid such as the atmosphere.— Let

P be the atmospheric pressure at a

given point, and ^the density of the air at that point. Let P+A/>
be the pressure at a point distant Ax below the given point ; then

from equation (94) we have Ap= d>g. Ax. From Boyle's law

we have d=kp, i.e. the density of the air is proportional to the
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pressure, temperature being supposed constant. Substituting

Integrating, we
A/>

kp for d in Ap=d • g • Ax, we have —?-= kgAx.

have loge/=^f+ constant. When ;r=o, p— P\ therefore, the

constant of integration is equal to loge
P, so that

or

\ogep= kgx+\oge P,

p = Pek9X
,

(US)

(i id)

where / is the atmospheric pressure at a point distant .r below

the given point at which the pressure is P.

Remark. — If the atmospheric pressure / and P at each of

two points be observed, and the constant k and acceleration

of gravity g be known, the vertical distance x between the two

points can be calculated from (116).

170. Measurement of pressure by means of the barometer. —
Consider a tube T (Fig. 92) filled with mercury and inverted in

a cistern of mercury C, the tube being

of such length that an empty space V
is left in which the pressure is zero.

Let the pressure p to be measured act at

the surface of the mercury in the cistern.

The pressure (p) inside of the tube at

the same level (see Art. 166 and equa-

tion 93) will be

Fig. 92.

p=xdg, (93 bis)

so that p may be calculated when x has

— been observed and d and g are known.

If d and g have always the same value, x

itself may be taken as the measure of the pressure. The unit

pressure in this case is equal to the pressure at unit distance

beneath the surface of mercury under standard conditions as

regards d and g.
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171. Measurement of pressure by means of manometers.— The

barometer is used for the most part to indicate the slight

changes in atmospheric pressure with which the meteorologist

has to do. The corresponding instrument for the measurement

of artificial pressure is called a manometer.

Of the numerous forms of manometer or pressure gauge, the

following are among the most important.

(a) Open tube manometer.—The essential feature is a U-

shaped tube (Fig. 93) both arms of which are open. This is

Fig. 93.

partly filled with a liquid, generally mercury. One arm is con-

nected with the vessel (a) the pressure of the contents of which

is to be measured. The difference in the height of the columns

of liquid in the two arms of the instrument measures the differ-

ence in pressure.

If the atmospheric pressure (k) be expressed in centimeters of

mercury, and the vertical height // between the crests of the
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mercury columns {in and mf
, Fig. 93) be also given in centimeters,

the pressure at a is

(b) Closed-tube manometers.— For the measurement of con-

siderable pressures, the length of tube required in the construc-

tion of an open-air manometer renders that form of apparatus

Fig. 94. Fig. 95.

inconvenient and in extreme cases impracticable. In such cases

the open arm is shortened and sealed, and the shrinkage in the

volume of the enclosed air is used to indicate the pressure.

The tube of such manometers is sometimes cylindrical as in

Fig. 94, in which case the distances between successive divisions

of the scale form members of the diminishing series

i.1.1. 1 1 ,. _.i_ etc1
• 3 • 6 • 10 • 15 • 2 1> cu-

Sometimes the closed tube manometer is given the conical

form shown in Fig. 95, a form in which the scale is more

nearly uniform.
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Fig. 96.

(c) Manometers for very high pressures.—When the pressures

to be measured are large, the volume of air within the closed-

tube manometer becomes so small as to make

accurate observations of its changes difficult;

recourse is then had to one of the numerous

forms of mechanical pressure gauge. Fig-

ure 96 shows a well-known form, that of

Ducomet, in which the pressure acting upon

the interior of the flexible wall of a capsule

(C) against which the double spring AB acts

from without, gives a greatly magnified move-

ment to a pointer. For the determination

of excessively high pressures, Cailletet (1880), in some of his

researches upon the liquefaction of the permanent gases, made

use of the compressibility of glass. His

manometer (Fig. 97) consisted of a bulb of

glass containing mercury. This was enclosed

in a massive cylinder of steel which was con-

nected with the reservoir, the pressure within

which was to be measured by means of a copper

tube of heavy walls and small bore. The com-

pression of the glass caused the enclosed mer-

cury to rise, indicating pressures upon an

attached scale.*

(d) The McLeod gauge.— It is sometimes

necessary to measure extremely low pressures,

for which purpose neither the barometer nor

the open-tube manometer, nor, indeed, the

closed-tube manometer in its usual form is

adapted. The apparatus commonly employed

is called (from its inventor) the McLeod gauge. It consists

of a glass bulb (Fig. 98) of known capacity, carrying a closed

capillary tube (/), the contents of which for each centimeter

of its length is likewise known. This bulb is connected

* Cailletet, Annates de Chimie et de Physique (5), 19, p. 388; 1880.

Fig. 97.



120 ELEMENTS OF PHYSICS.

with the vessel Vt
the internal pressure of which is to be

ascertained through the tube p. It is separated from the

outer atmosphere by the column of mercury m, the height

of which can be varied by raising or lowering the reservoir M.

The gas within the bulb being in connection with that of

the vessel V, is at the same pressure. By raising M, how-

ever, it may be isolated from V by the intervention of the

Fig. 98.

mercury. The gas thus isolated is compressed by causing the

rising mercury to flow into the bulb, until, finally, it is brought

to a pressure of one atmosphere. The volume which it then

occupies will be a small portion of the contents of the capillary

tube /. From the relative volumes the initial pressure is readily

computed by Mariotte's law (Art. 167).

172. Archimedes * principle.— The total force with which a

fluid acts upon a submerged body is equal to the weight of the

displaced fluid, or, in other words, to the weight of a volume of
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the fluid which equals the volume of the body. It is a vertical

farce, and its point of application is at the point which would

W?the center of mass of . the submerged body, were the latter

homogeneous.

Proof. — Consider a portion of the fluid of the same size and

shape as the submerged body. This portion of fluid is station-

ary, so that the total force with which the surrounding fluid

acts upon it must have the same point of application as the

force due to gravity, and must be equal and opposite thereto.

The force due to gravity is of course the weight of the portion

of fluid, and its point of application is the center of mass

thereof ; so that the proposition is proven.

Corollary.— If the body is but partly submerged, the total

force with which the fluid acts upon it has its point of applica-

tion at the center of mass of that portion of the body (considered

homogeneous) which lies below the plane of the fluid surface,

and is equal and opposite to the weight of a portion of the fluid

of the san#%ze and shape.

Remark. — The total force with which a fluid acts upon a

body wholly or partly submerged is called the buoyant force of

the fluid, and its point of application is called the center of

buoyancy.

173. Archimedes' principle in the case of gases.— When a

body is submerged in a gas, such as the earth's atmosphere,

which is the case with most substances when they are being

weighed, it is acted upon by the buoyant force of the fluid, in

accordance with the principle of Archimedes. The effect, though

slight on account of the small density of the surrounding fluid,

is by no means inappreciable, and it has to be considered in the

accurate weighing of bulky objects. It is commonly demon-

strated qualitatively, by means of an instrument called the

baroscope (Fig. 99). This consists of a hollow sphere of glass

or metal, at one arm of a small balance, the same being counter-

poised by a leaden weight. It is easy to make the adjustment
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of the balance such that the globe is slightly heavier in air, but

when tested in vacuo, by placing the baroscope under the bell jar

of an air pump and exhausting the air, it is in excess of the leaden

weight. The loss suffered by each, in air, will obviously be that

v/wm V-<^///////////////////}/bb0Z$

Fig. 99.

due to the buoyant force of the displaced air; a force much

larger in the case of the hollow globe than in that of the compact

counterpoising weight.

Fig. 100.

174. Floating bodies.— A body floating upon a fluid displaces

its weight of the fluid. Its power to do so (or in other words
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the fact that its mean density is less than that of the fluid)

determines whether it will float freely or will be entirely sub-

merged.

When the center of mass and the center of buoyancy are in

the same vertical line, the body is in equilibrium. That this is

the condition of equilibrium is evident since in general a floating

body is acted upon by a couple gd~>be (Fig. ioo), tending

whenever the line bg is not vertical to render it so.

175. The metacenter.— The question of the stability or insta-

bility of the equilibrium of a floating body is somewhat com-

plicated by the fact that the center of buoyancy shifts with the

Fig. 101.

position of the body. When equilibrium exists, the line gb is

called the axis. When the body is innnitesimally inclined, the

center of buoyancy is shifted to b
f

. A vertical through this new

position will cut bg in m, which point is called the metacenter.

When the metacenter is above the center of mass as in Fig. ioi,

the equilibrium is stable ; when below, it is unstable.
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Properties of the Surface Film of Liquids—
Capillarity.

176. Sphere of molecular action. — It is probable that cohe-

sion and adhesion, those forces, namely, which cause the similar

and dissimilar particles of which bodies are made up to cling

together, are of the same nature as the gravitational attraction

of particles at sensible distances.

It can be shown, however, that the attraction must increase

more rapidly than the inverse square of the distance at very

small distances, in order to account for the extremely great

forces of cohesion and adhesion, and the sudden cessation of

these forces at (still very small) sensible distances.

Since molecular* attraction increases much more rapidly

than the inverse square of the distance, the action of the more

remote particles of a body upon a given particle is negligible

compared with the action of the particles in the immediate

neighborhood. A small sphere, with a radius perhaps not

greater than a few millionths of a centimeter, which includes

all the particles having appreciable action upon the particle at

its center, is called the sphere of molecular action.

177. Increase of pressure in passing across the surface of a

liquid.— The surface layer of a liquid, of thickness equal to the

radius of the sphere of molecular action, is called the surface film.

Fig. 102.

Let AB (Fig. 102) be the plane surface of a liquid. Consider

the molecular forces acting upon the fluid particle p. Describe

* The word molecular is to be here understood as referring merely to the smaller

parts of a body.
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the sphere of molecular action with its center at p. If this

sphere lies wholly within the liquid, that is, if p lies inside of

the surface film, the forces acting on / are the same in all

directions, li p lies in the surface film as shown, there will be

on the whole a downward force on p, because of the greater

number of attracting particles below than above /. Such forces

upon the particles of a liquid near its surface make the hydro-

static pressure just inside the surface film greater than just

outside the liquid. This increase of pressure across the plane

surface of a liquid is called the molecular pressure of the

liquid.

If the surface of the liquid is convex, as A'B' (Fig. 102),

there will be for each position of / a greater excess of attract-

ing particles below than for a plane surface, so that the incre-

ment of pressure across a convex liquid surface is greater

than it is across a plane surface. Similarly, the increment of

pressure across a concave surface is less than it is across

a plane surface.

178. Surface tension and surface energy.

(a) A surface film, or membrane, is said to be under tension

when the portions of the membrane on the two sides of any

line pull on each other. The force per unit length of line is

the measure of the tension.

(b) To increase the area of a surface, or membrane, under

tension, work must be done. The work done per unit increment

of area is called the potential energy of the surface, or simply

the surface energy.

179. Proposition. — The tension of a surface is equal to its

surface energy.

Proof. — Consider a rectangular portion, ABCD (Fig. 103)

of a membrane under tension T. The force F pulling on

the side AD to maintain the tension is F=Tx. Let the mem-
brane be stretched by an amount Ay in the direction of F The
work done by the force F is FAy= TxAy, which, divided by the
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increment of area xLy, gives T as the work done per unit

increment of area.

Corollary. — Any surface which requires work to be done to

increase its area is under a tension equal to its surface energy.

Fig. 103.

180. Surface energy and surface tension of a liquid. — From
Art. 177 it is evident that work must be done to carry a par-

ticle of a fluid from its interior into the surface film. If the

total area of the fluid surface remains unchanged some other

particle of the fluid will pass from the surface film into the

interior and, on the whole, no work will be done. If, however,

the movement of interior particles to the surface of a liquid is a

result of an increase in the extent of the surface, an amount of

work proportional to the increase of surface will be expended.

A liquid has therefore a definite surface energy ; therefore the

surface film of a liquid is under a definite tension) Compare

Arts. 178 and 179.

181. Angles of contact ; case of three fluids. — Let a (Fig.

104) be a line perpendicular to the paper, at which three fluid

WATER

surfaces meet. The condition of equilibrium requires the tan-

gents of the three surfaces at a to be parallel to the sides of a
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triangle B, these sides being proportional to the tension of the

respective-surfaces. The angles between the surfaces at a can

thus be calculated. They are always the same for the given

fluids, and are called the angles of contact.

182. Angles of contact ; case of two fluids and a solid.— Not

only is a surface, separating two fluids, under tension, but so

also is a surface separating a

solid and a fluid. In this case,

however, the surface being rigid,

the experimental evidence is less

complete. Let a (Fig. 105) be

the line of contact, with glass,

of the surface separating oil and

water. The condition of equilib- glas

rium requires the resolved part

parallel to AB, of the tension S,

to be equal to the difference of

the tensions and w, so that the

angle 6 is thereby determined.

Remark. — Very slight impurities in a liquid, or the least con-

tamination of its surface, alters the surface tension greatly.

Fig. 105.

Fig. 106.

This fact may be demonstrated by means of the following

very simple but effective experiment.

Upon a vessel of water, an ordinary thin rubber band is
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floated. This divides the surface into two regions, external and

internal.

If the internal region be merely touched with a glass rod or

splinter of wood which has previously been dipped in some

other liquid such as alcohol or oil, its surface tension is dimin-

ished. The tension of the outer region, as yet unchanged,

instantly draws the hitherto nearly closed loop into an approach

to circular form (Fig. 106). If the film of the external region

be then weakened by a similar application, the band relapses

again into its normal shape.*

183. Capillary elevation and depression.— Let AB (Fig. 107)

be a broad vessel containing water, in which a capillary tube,

T, of glass is placed. The surface of the water at a is sensi-

bly plane ; in the capillary tube, however, the surface of the

water is concave as shown. The pressure of the surrounding

air is everywhere the same, so that the pressure just inside the

plane surface at a must be greater than the pressure just inside

uy
Fig. 108.

the concave surface in the tube. [See Art. 177.] This

difference of pressure causes the water to rise in the tube,

until it is balanced by the difference in level //.

If the vessel, described above, contains mercury instead of

water, the surface within the capillary tube will be convex.

Consequently the pressure just beneath this surface will be

greater than within the surface in the surrounding vessel, and

the mercury in the tube will be depressed as shown in Fig. 108.

* See Ernest Nichols, Physical Review, Vol. I., p. 299.



CAPILLARITY. 129

Fig. 109.

184. The law of diameters (Jurin's law).— The elevation or

depression of a liquid in a capillary tube is inversely propor-

tional to the diameter of
A

the tube. This is some-

times called Juriris law>

but being a result of the

above theory of molecular

attraction, it is properly

an experimental verifica-

tion thereof.

Jurin's relation between

size of capillary tubes and

the amount of elevation or depression therein is derived from

the foregoing principles as follows

:

Let Fig. 109 represent a capillary tube, bore of radius r,

plunged in a broad vessel of liquid. Then irr^Jidg is the weight

of the elevated column h of liquid, irr^h being its volume, d its

density, and g the intensity of gravity. The force which sus-

tains this weight is the vertical component, 2 irrTcos 6, of the

force due to the tension of the liquid surface at the walls of the

tube, 2 irr being the circumference of the bore of the tube, T
the surface tension, and 6 the angle of contact. Therefore

irr^hdg = 2 TrrTcos 0,

whence // = 2 T cos f>

d?r
("7)

For water in glass tubes 6 = o, so that for this case (117)

becomes

h = 2-T.
(118)

dgr

This equation enables the calculation of T when h, d
y g, and r

are known.

185. Equation of capillarity.— The difference in pressure on

the two sides of a liquid film, due to the tension of the film,
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depends upon the tension and upon the curvature of the film.

The equation expressing this relation is called the equation of

capillarity. It is

*= T^ + RI") ("9)

in which / is the difference in pressure on the two sides of a

film, due to the tension T of the film, and R' and R" are the

principal radii of curvature of the film at the point.

Proof.— (a) The tension of a film is equivalent to two

mutually perpendicular equal pulls. The effect of each pull

may in any case be considered by itself, the total effect being

the sum of the effects due to each.

(b) Consider a small portion A5 of any curved surface in the

neighborhood of a chosen point on the surface. Draw a tangent

plane to the surface at the point. A plane normal to this

tangent plane intersects A5 in a curve which is sensibly an arc

of a circle of radius r. There is one position of this normal

plane for which r has a maximum value R' , and another position

at right angles thereto for which r has a minimum value R".

These two radii, R' and Rn
, are called the principal curvatures

of the surface at the point. The effects of each of these two

curvatures of a surface at a point may in any case be considered

separately. When considering the effect of one curvature the

surface may be thought of as cylindrical.

(c) Pressure inside a cylindri-

cal film.— Let AB (Fig. no)

represent a strip, of width w, of

a cylindrical film of radius R'.

Consider the portion of this

strip which subtends an angle

B 2 Ad from the axis O of the

cylinder. This portion is of

length 2A6-R' and of width w\

therefore the force due to inter-
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nal pressure p pushing out on this portion is pwR' 2 AO. The

forces wT, due to the tension T of the film, pulling this portion

of the film on either side, are inclined at the angle A0 to the

horizontal, so that the downward component of each is wT-AQ.

Therefore the total downward force acting upon the portion of

the film under consideration is 2wT-A6.

It follows that

2wT.A0=pwR' 2 AS or p=~ (120)

(d) In case of a film having double curvature, with principal

radii R' and R ,f
, the internal pressure contributed by each is

T T—
- and —— respectively, so that the total internal pressure is

T
,

T

186. Examples of the application of the equation of capillarity.

(a) Liquid uninfluenced by gravity.— In such a liquid the

pressure is the same throughout, so that from equation (119)

— H—- must have the same value at all points of the surface

of such a liquid. The only finite surface which satisfies this

condition is the sphere. Therefore the surface of a liquid

uninfluenced by gravity must be spherical.

Gravity produces only imperceptible variation of pressure at

different points in a very small globule of liquid so that such

globules always assume a spherical form.

(b) Soap bubble.— The difference in pressure inside and out

of a soap bubble is sensibly of one value at every point of its

surface, so that 7^+—, is constant, and the bubble is spherical.

(c) Soap films on wire frames (Plateau).— In this case the

pressure is the same on the two sides of the film, so that

1
,

T
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If the wires of the frame lie in a plane, the film if&elf will be

plane; otherwise R' and R" are equal and opposite at each

point of the film.

• (i
Fluids in Motion; Hydraulics.,

187. Fluid friction ; viscosity.—The action of a shearing stress

upon a portion of fluid is to continually lengthen it in the direc-

tion of the /////, and shorten it in the direction of the push.

That is, </> being the angular distortion of a portion of the fluid,

the action of a shearing stress is to cause
(f>

to change at a

definite rate,
C

-^-.

d6
Stokes* law. — Stokes found that the rate, —s at which the

dt

angular distortion of a portion of fluid changes is approximately

proportional to the shearing stress. The constant ratio, shearing

stress divided by -f, for a given fluid is called its coefficient of
at

viscosity. We may write, therefore,

dt

in which rj is the coefficient of viscosity of a fluid, and -f- is the
dt

rate at which it is distorted by a shearing stress 5.

188. Viscous fluid between parallel plates ; lubrication. —
Let A'B' (Fig. in) be a plane plate, and AB another, parallel

thereto, distant x therefrom, and moving at velocity v, as indi-

cated by the arrow. Let the space between the plates be filled

with a viscous fluid. Consider a portion CD of the fluid, which

at a given instant is cubical. After the lapse of time At, the

upper plate will have moved a distance vAt, and this cubical

portion of fluid will be distorted as indicated by the dotted

rhombus, of which the angle of distortion is A<f>= -—
. Therefore

#=* (m)
dt X
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The stress in the liquid, aside from hydrostatic pressure, is a

shearing stress of which the two pulls are + 5 and — 5 in the

directions shown. Substituting

S=

dt

rjv

.- in ( 1 2 1 ), we have
x

(123)

The stress on all horizontal (also on all vertical) sections in the

fluid is purely tangential and equal to 5. Therefore the plates

V At
k-

/

/

/

/

A9 /
/

/
~/ * /

I sS/s
/

/

' <//\-s
/

/
* /

1 /

1

C STATIONARY

• Fig. 111.

are acted upon by dragging forces F=Sa, in which a is the

area of the plate. Substituting the value of 5 from (123), we

have
arjv

x (124)

in which F is the force required to slide a plate of area a at

velocity v over another with a layer between, of thickness x, and

of which the coefficient of viscosity is rj. The coefficient of

viscosity of a fluid is sometimes defined directly from this equa-

tion, instead of from equation (121). Equation (124) can be

easily transformed to apply to a flat circular disk rotating near

a flat plate with viscous fluid between.

189. Flow of viscous fluid through a long tube. — Let p be

the radius of the bore of the tube, / its length, / the pressure

forcing the fluid through, and v the velocity of the fluid at a

distance r from the axis of the tube. Consider a cylindrical

portion of the fluid of radius r coaxial with the tube. The
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surface of this cylindrical portion moves as a solid rod through

the tube at velocity v. Similarly the cylindrical surface of

radius r 4- Ar moves through the tube as a hollow shell at

velocity v 4- &v. The fluid layer between this rod and shell

is under conditions similar to the fluid between the plates, as

discussed in the previous article. Therefore, writing Av for v

in equation (122), and Ar for x, we have -5- = — • Substituting
dt dr

this value of
—® in ( 1 2 1 ), we have S = n—
dt

v J dr
This stress is tan-

gential over the whole surface, 2 irrl, of the rod, so that the

dragging force on the rod is 2 irrlS or 2 irrlr] This dragging
dr

force is continually overcome by the force 7rr 2
p pushing on the

end of the rod, and is equal thereto. We have, therefore.

dv dv _ pirr2p = 2 irrli) — , or — = -*-— r, or v = J-— 4- constant. When
dr dr 2 It) 4 lv\

r = p, v = o, so that the constant of integration is equal to

t>P
2

_ £^_. It follows, therefore, that
4/77

.-*?-£. (»S)
4/77 4/77

The velocity at each part of the tube is thus determined. To

find the volume V of fluid discharged in

time t, consider a section of the tube (Fig.

1 1 2). The velocity over ail the area, 2 irrAr,

of the dotted annulus, is v, so that the

volume AV, flowing across this annulus in

time t, is AF=2 irrAr-v-r. Substituting v

from (125), we have

2 /?7

Fig. 112.

dV^^r^dr -J2L_rdr,
2 Irj

or

Therefore

2/Wo 2 /?7 X'
;v/r.

F= irpp^T
(126)

This equation enables the calculation of 77 when F, /, p, t,

and / have been determined.
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Motion of Incompressible, Frictionless Fluids.

190. Energy of a liquid.

(a) Potential energy. Proposition. — The work IV, required

per unit volume to introduce incompressible fluid into a region

under pressure/, is W = p. (127)

Proof. — Let CC (Fig. 113) be a cylinder provided wirh a

piston of area a, and communicating with a vessel under pres-

sure/. The force F nec-

essary to move the piston

is ap (Eq. 113). The

work done in pushing the

piston a distance Ax is

apAx, from (55); but aAx
is the volume of liquid

Fig. 113.

forced into the vessel by the movement, so that the work done

per unit volume is p.

Corollary.*— The potential energy per unit volume of an

incompressible fluid under pressure / is equal to /, for that

amount of work must be done to introduce unit volume of the

fluid into a region under pressure /.

(b) Kinetic energy.—The kinetic energy per unit volume at

a point in a moving fluid is

W=\d&, (128)

in which d is the density of the fluid, and v is its velocity at the

point.

Proof.— Consider a small volume A V of the fluid. Its mass

is A V - d, whence, from equation (59), its kinetic energy is

* This statement, although true in the case in which it is to be used below, requires

for generality a number of limiting conditions to be stated. The general aspect of

such limitation is as follows: Work done is always expressed as the product of two
factors, one of which is a generalized co-ordinate and the other is a generalized force.

For examples, see equations (55), (57), (106), (107), (109), etc. The doing of this

work always depends upon the variation of the generalized co-ordinate. Thus an
incompressible fluid may be brought from zero pressure to any given pressure without

the expenditure of any work by making the pressure the variable.



136 ELEMENTS OF PHYSICS.

JAJ^- dip*. This, divided by AF, gives \dv* as the kinetic

energy per unit volume.

191. Application of the principle of the conservation of energy.

(a) A fluid having a large coefficient of viscosity is said to be

viscous. Glycerine, syrup, and the like are viscous.

(b) A fluid having a small coefficient of viscosity is said to

be mobile. Water, ether, and the like are mobile.

(c) A fluid of which the coefficient of viscosity is zero is

said to be frictionless. There is no such fluid, but mobile fluids

flowing through short pipes and orifices may be treated as

though they were frictionless, without great error.

\d) An incompressible fluid is one which does not change its

volume under pressure. Ordinary liquids may be treated as

though they were incompressible, without great error.

(e) Generally speaking, energy is dissipated during the motion

of a viscous fluid.

(J) No energy is dissipated in the motion of a frictionless

fluid, therefore the sum of the potential energy and kinetic energy

of such a fluid must remain constant during the motion.

Fig. 114.

192. Efflux.— Let V (Fig. 114) be a ves-

sel containing a frictionless liquid of density

d, under pressure /. Let 00 be an orifice

from which the liquid issues in a* jet, the

velocity of the particles of liquid in the jet

being v and the outside pressure being fv
At a point in the vessel far enough removed

from 00 that the velocity may be inappreci-

able, the energy (potential) per unit volume

is /. In the jet the total energy per unit

volume of the liquid is p 1 + \ dv2
. From

Art. 191 we have p = p x + \di?\

whence v=^ (p-px ) (129)
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This equation is not strictly applicable to ordinary viscous

compressible fluids. The effect of viscosity is to lessen v, and

the effect of compressibility is to increase v. For ordinary

liquids the effect of viscosity is the greater; therefore (129)

generally gives too large values for v.

193. Vena contracta. — It is to be particularly noted that the

discharge from the orifice, per unit time, is not va, a being the

area of the orifice, inasmuch as v is not perpendicular to the plane

of the orifice at each point. The lines of flow are somewhat as

shown in Fig. 114. On account of this obliquity of the lines

of flow in the orifice the jet contracts slightly after leaving the

orifice. In this contracted vein (vena contracta). the velocity is

sensibly uniform, in magnitude and direction, over the whole

section of the jet; and the discharge per unit time is equal to

the product of v into the sectional area of the jet at this narrow

part.

Remark. — If the pressure in the vessel V (Fig. 114) is due

to gravity, then/— px
= xdg, x being the distance of the orifice

beneath the surface of the liquid in the vessel and g the intensity

of gravity. Substituting this value of/ — p\ in (129), we have

V=V2gX. (I30)

From equations (23) and (24) this velocity is seen to be that

which a body would gain in falling freely through the distance x
(Torricelli's Theorem).

194. Diminution of pressure in a throat. — Let V (Fig. 115)

be a vessel containing liquid of density d, at pressure /, having

a tubular vent abc contracted at b. Let b and c be the sectional

areas of the tube, vx and v
2
the fluid velocities, and px

and p2
the

pressures, at b and c respectively. From Art. 191 we have

p = p x+ \dv? (i)

P= P>i+ \
dvl (ii)
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Further, bv
x
and cv

2
are each equal to the discharge per unit

time, so that

bv
1
= cv

2
. (iii)

These equations (i), (ii), and (iii) completely determine vv v
2 ,

and p i
when /, d, p2

and the ratio b : c are given. The follow-

ing two points are of particular interest.

aJET

Fig. 115.

(a) Solving ii for v2 , we have

which is identical to equation (129). The efflux, according to

the above equation, is unaffected by the narrow throat, since the

velocity in the broad tube at c is the same as if that tube were

attached directly to the vessel.

(b) Solving for pv we have

A-/-J(A~A> 030

Now p, c, b, and/
2
being entirely independent of each other,

except only that p—p2
is understood to be positive and c>b, it

is evident that px
may be very small or even negative. This

diminution of pressure in a throat is the explanation of the

action of injector pumps and of some paradoxical toys.

Remark.— The following conditions * are assumed in the

above discussion, in addition to the assumed frictionless char-

acter and incompressibility of the liquid, viz.

:

* These two conditions are necessarily satisfied in a perfectly frictionless fluid, but

not necessarily even approximately satisfied in a mobile fluid.
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(a) That the wall widens gradually on the two sides of the

throat so that no sharp corners may produce eddies.

(b) That the pressure px
in the throat does not attain to so

great a negative value as to break the liquid into spray as it

emerges into the widening portion of the tube.

195. Gauging water.

(a) Orifice meters.— In these meters the velocity of efflux of

water from an orifice of known area is determined by the help

of equation (130), x having been determined, and the dis-

charge is then calculated from the area of the orifice and the

velocity of efflux. The corrections required on account of

the contracted vein are previously determined experimentally

for the given shape of orifice.

(b) Displacement meters.— In these meters the flow is meas-

ured by counting the strokes of a piston in a cylinder so

arranged that the cylinderful of water passes at each stroke.

Fig. 116.

(c) The Venturi meter.— This meter depends upon the dimi-

nution of pressure in a throat, as follows :

Let aba (Fig. 1 16) be the pipe through which the water to be

measured flows. Let v
x
and v

2 , and p x
and p2 , be the velocities

and pressures at a and b respectively, and let a and b be the

sectional area of the pipe at a and b respectively. From Art.

191 we have

px+\dv?=p%+\dv& (i)

also av
x
=bv

2, (ii)
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av
x
and bv% being each the flow per unit time. Solving these

two equations for avv we have

Thus, the flow per unit time av
x

is proportional to the square

root of the difference /> 1 —fl2 - Two tubes, c and d, lead to a

pressure gauge and clockwork arranged to integrate (/j—

/

a)

i

and provided with dials giving direct readings of the amount of

water which has passed.



CHAPTER VIII.

CHEMICAL PHYSICS.

196. Homogeneous substances. — A homogeneous substance

is one which is similar in all its parts. Organic tissue, living

or dead, is non-homogeneous. Any non-homogeneous substance

must be reduced to one or more homogeneous substances

before any detailed chemical or physical study can be made

of it.

197. Elementary and compound substances. — A homoge-

neous substance can, in many cases, be broken up into two

or more distinct homogeneous component parts, each having

characteristic properties. Such a substance is called a com-

pound substance or a chemical compound. The component

parts may themselves be compound. Substances which have

never yet been broken up in this way are called elementary

substances or chemical elements, of which about seventy are

at present known.

198. Conservation of matter. — The sum of the masses of

the component parts of a compound substance is equal to the

mass of the compound. That is, the total amount of matter,

as measured by its mass, remains constant whatever changes it

may be made to undergo.

199. Law of constant proportions.— The masses of the com-

ponent parts of a given compound bear a constant ratio to each

other, called the combining ratio of the two parts. A homo-

geneous substance of which the component parts are not in a

fixed ratio is called a mixture. Thus aqueous solutions, air, etc.,

Hi
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are mixtures. Two elements often have several distinct com-

bining ratios. Consider several chemical elements a, b, c, •••
;

let bv b2> bs ,
• ••, cv c

2 , c
3,

• ••, and dv d
2 , d3 ,

• •-, be the respec-

tive masses of these elements which can combine with a given

mass a
x
of the element a. Then a

x
: bv a

x
: b

2 , a
x
:b

z ,
••• are the

combining ratios of a and b; a
1
:c

1 ,
a

1
:c

2 , a
1
:c

3 ,
••• are the

combining ratios of a and c, and so on. Further, the actual

combining ratios of b and c are found to be included in the set

bi : c1} b x : c2, b x : c3, b2 : cb b2 : c2, etc., although all of these ratios

may not occur.

200. Law of multiple proportions.— The masses bv b
2 , b

3 ,
•••

of an element b which can combine with a given amount a
x

of an element a are multiples of some one number, so that the

ratios b
x

: b
2 , b

x
: bs ,

••• are rational fractions.

201. Molecular theory.*— The above laws of chemical com-

bination, as well as other experimental laws to be given here-

after, are clearly represented if we assume that each chemical

element consists of ultimate similar particles of equal mass

called atoms, and that the atoms of two or more elements in

a compound are arranged in similar groups called molecules.

Thus nitrogen and oxygen combine to form N
20, NO, N

2 3 ,

N02 , and N
2 5

.

The combining ratios of these various compounds are

2802 : 1588, 1 401 : 1588, 2802 : 4764, 1401 : 3176, and 2802 : 7940

respectively. These numbers are multiples of 1401 on the one

hand and of 1588 on the other. The number 1401 is called the

atomic weight of nitrogen and the number 1588 is called the

atomic weight of oxygen, the atomic weight of hydrogen being

chosen arbitrarily as 100.

* This molecular theory proves very useful throughout the subject of chemistry,

in the theory of gases and solutions, in the theory of heat, in the theory of crystalli-

zation, and in the theory of electrolysis. The student should look to this use. All

elaborations of the theory are suggested by and explanatory of obscure chemical and

physical phenomena, and until the student takes up the study of such phenomena,

it is worse than useless to dwell upon the details of the theory.
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202. States of aggregation ; solids; liquids; gases.—A solid

is a substance which has more or less rigidity of form or

which can withstand, at rest, a shearing stress. A fluid is

a substance which has no rigidity of form. (See Art. 166.)

A liquid is a fluid capable of having a free surface and of

which the volume is definite. A gas is a fluid of which the

volume is limited only by that of the closed containing vessel.

The phenomena of heat indicate, as we shall see, that the

molecules of all substances are in a state of erratic motion

more or less violent. In solids it is very likely that each

molecule in its motion does not move to any sensible distance

from its mean position, but, on the whole, retains its proper

place in the molecular structure (crystalline) of the solid. In

liquids and gases each molecule wanders throughout the mass

of the fluid, as is shown by the phenomena of diffusion and

electrolysis.

203. Crystallization. — Crystalline substances. Some liquids

(also some gases) under proper conditions, e.g. when cooled to

a certain temperature, begin to deposit solid parts called crys-

tals, which are of regular form and bounded (usually) by plane

faces. This phenomenon is called crystallization. Solids formed

in this way are said to be crystalline. The physical proper-

ties of crystalline solids, such as cleavage, and their elastic

and electrical properties, indicate definite molecular structure.

Indeed the phenomenon of crystallization is to be thought of

as a definite grouping of the molecules as they pass from the

freedom of the liquid state to the solid state. (See Art. 210.)

204. Amorphous substances. — Other liquids under proper

conditions, e.g. when slowly cooled, become more and more

viscous, until to all appearances solid. Such substances have

no definite melting point (see Art. 242), they give no evidence

of molecular structure, and are called amorphous substances.

Most amorphous solids are very slightly viscous, and exhibit

other properties of liquids. For example, glass is known to
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be an electrolyte, a fact which indicates that some of its mole-

cules or atoms must wander throughout its mass.

205. Crystalloids; colloids.— Substances which crystallize

upon solidification are called crystalloids. Some instances, sugar

for example, may be either amorphous or crystalline according

to the conditions under which the solidification takes place.

Some substances, such as glue and albumen, seem to be totally

incapable of crystallization. Such substances are called colloids.

206. Law of constant angles * (Rome de l'lsle). — During the

growth of a crystal the angles between the various faces remain

unchanged, and for a given substance these angles are invari-

able. The amount of deposition on a given face, i.e. the growth

of that face, varies greatly with circumstances. Therefore the

directions only of the various faces are significant.

207. Axes of reference ; intercepts of a face. — It is conven-

ient to choose as axes of reference three lines parallel respec-

tively to any three f edges of a crystal which do not lie in one

plane.

Let the plane of a crystal face be extended until it cuts these

X, Y, Z axes of reference at distances a, /3, and y respectively

from the origin. These distances, a, /3, and 7, are called the

intercepts of the face.

208. Axial parameters of a crystal.— Indices of a face. It

is convenient in crystallography to express the intercepts a, /3,

and 7 of a face in terms of three chosen J lengths a, b, c in the

* The following discussion of crystallography cannot be followed by the beginner

without the help of crystal models. Actual crystals are not so good, since the eye

scarcely perceives symmetry of angles except it be accompanied by symmetry of

dimensions, which is easily provided in models, but only occurs accidentally in actual

crystals. The reader is referred to E. S. and J. D. Dana, A Text-book of Miner-

alogy, "Wiley and Sons, 1886, for a full discussion of crystallography.

f It is evident that these axes may be other than rectangular. The choice of axes

of reference here indicated greatly simplifies the statement of the law of rational

indices. (.See Art. 209.)

% For manner of choice see Art. 209.



CRYSTALLIZATION. 45

directions of the respective axes of reference, such that a= la,

/3= mb, and 7= /^.

The chosen lengths a, b, and c are called the axialparameters

of the crystal, and /, m, and n are called the indices of the given

face. Since the direction only of a face is significant, the inter-

cepts la, mb, and ?ic may be divided by any number, say a ; this

is equivalent to displacing the face parallel to itself ; the inter-

cepts then become /, m • — , and n • — The permissible values
a a

of the indices /, m, and n for the various faces of a crystal are

determined from the lazv of symmetry (Art. 210) and the law

of rational indices (Art. 209), as we shall see, so that a. given

crystal is completely characterized by the values of — and -, the
a a

angles between the axes of reference, and by its degree of sym-
b c

metry. The values of — and -, and the angles between the
a a

axes, are called the elements of a crystal, and the degree of sym-

metry (there are six degrees) determines to which one of six

systems the crystal belongs.

209. Law of rational indices (Malus).— It is always possible

to choose - and :- (Art. 208) for a given crystal so that for

every face of the crystal the indices /, m, and ;/ are integers.

The intercepts of a number of faces of a given crystal upon

the axes of reference being determined by observation, the
b c

numerical values of - and - are determined upon the condition*
a a

that /, ;;/, and n shall be integers for every face. There is a

series of values of - and - which satisfy this condition, the
a a J

smallest values being chosen.

210. The molecular theory of crystallization.— All the experi-

mental facts concerning crystals are clearly represented if we
imagine a crystal to be built up of molecules which are deposited

* The possibility of this condition in every case is Malus' discovery.

L
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in layers upon the various faces. The molecules in each layer

being arranged in rows, each row being the line of intersection

of two possible faces of the crystal.

The axes of reference are thus in the directions of rows of

molecules. If the spacing of the molecules in these axial rows

is imagined to be proportional to the axial parameters a, b, c of

the crystal, then the indices /, m, n of any face (or layer of

molecules) must be integers. The most familiar example of this,

in two dimensions, is afforded by a field of Indian corn in which

the hills are in rows both ways. The hills then form diagonal

rows. Choose any two rows as axes of reference. Then any

other row not passing through the origin has intercepts on these

axes and these intercepts are integral multiples of the distances

between adjacent hills in the respective axial rows.

211. Symmetry of crystals.— Whenever any two edges of a

crystal are at right angles to each other, or whenever any three

edges are mutually rectangular, it is conducive to simplicity to

choose such edges as axes of reference.

Crystals are classified according to their degree of symmetry,

into six systems, as follows :

Orthogonal systems, to which all crystals belong, which have,

possibly,* three mutually perpendicular edges, which are chosen

as axes of reference. There are three such systems :

(a) The cubic or isometric system. In this system the faces

are similarly grouped about each of the three orthogonal axes.

Therefore a= b=c (Art. 208), and these crystals are symmetrical

to nine planes, of which three are the axial planes xy, yz, and zx,

and the other six are diagonal thereto.

(b) The tetragonal or dimetric system. In this system the faces

are similarly grouped with respect to each of two only of the

orthogonal axes. Therefore aSb= c, and these crystals are

* An edge or a face may be possible on a crystal of a given substance without

actually occurring. That is, certain layers of molecules in a crystal may not always

show as faces.
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symmetrical to five planes, of which three are the axial planes

and the other two are diagonal planes intersecting along the

axis a.

(c) The orthorhombic or trimetric system. In this- system

the faces are dissimilarly grouped about the three orthogonal

axes. Therefore a, b, and c are all different, and these

crystals are symmetrical to three planes, which are the axial

planes.

Inclined systems, to which all crystals, except hexagonal

crystals, belong which do not have, possibly, three mutually

perpendicular edges. There are two such systems :

id) Monoclinic system. Crystals belonging to this system

have, possibly, one edge which is at right angles to two others.

In this system a, b, and c are unequal.* Monoclinic crystals are

symmetrical to one plane which is the plane of the oblique

axes.

(e) Triclinic system. Crystals belonging to this system

have no two possible edges at right angles. Therefore the

axes of these crystals are all oblique, and a, b, and c are un-

equal, f Triclinic crystals have no plane of symmetry; the only

symmetry they possess consists in the fact that diametrically

opposite parts are similar.

(/) The hexagonal system. Crystals which have possibly

three edges 6o° apart in one plane, and another edge at right

angles thereto, and of which the faces are similarly grouped

with respect to the three coplanar edges, are classified together

as hexagonal crystals. Such crystals have four axes. The

three coplanar axes are called the lateral axes. The lateral

axial parameters are equal.J

* A crystal admitting of monoclinic axes, but of which the arrangement of the

faces requires two or more of a, b, and c to be equal, falls into one of the previously

mentioned systems.

t A crystal admitting of triclinic axes, but of which the arrangement of the faces

requires two or more of a, b, and c to be equal, falls into one of the previously

mentioned systems.

+ On account of the similar grouping of the faces with respect thereto.
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There are two subdivisions of hexagonal crystals :

(1) Those which are symmetrical to seven planes; namely,

the plane of the lateral axes which is called the basalplane, and

six planes perpendicular to the basal plane, three of which

include the lateral axes and three, called the diagonal planes,

are midway between them.

(2) Those which are symmetrical to four planes; namely, the

basal plane and the diagonal planes just mentioned.

212. Solution.— Some solids when placed in a liquid, for

example, sugar in water, are disaggregated; the molecules of

the solid become free and wander about through the liquid.

The solid is said to dissolve in the liquid and the mixture,

which soon becomes homogeneous, is called a solution. Gases

are, in many cases, absorbed by a liquid in indefinite propor-

tions (Art. 199), and one liquid often mixes with another. Such

mixtures are also called solutions.

213. Solubility.— When a liquid at a given temperature has

dissolved the greatest possible amount of a substance, the

resulting solution is said to be saturated. The mass of a sub-

stance per unit mass of liquid in a saturated solution at a given

temperature is called the solubility of the substance at that

temperature. The solubility of solids in nearly every case

increases rapidly with rise of temperature ; the solubility of a

gas ordinarily decreases with rise of temperature.

214. Supersaturation.— If a saturated solution of a substance

be cooled slowly, the substance is ordinarily slowly deposited,

usually as crystals. The beginning of this action requires a

nucleus such as a particle of dust, a sharp point of a submerged

body, or a crystal of the substance. Such nucleus being absent,

the solution becomes supersaturated as it is cooled. A super-

saturated solution is in a state of unstable equilibrium and in

many cases a very slight disturbance of any kind upsets it and
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causes the deposition of crystals. Liquids which are on the

point of freezing behave as saturated solutions.

215. Diffusion. — When two liquids which are miscible, for

example, pure water and an aqueous solution of any salt, are

brought carefully together so as not to mix by convection, it is

found that in the course of time they become uniformly mixed.

This phenomenon is called diffusion; it shows that the molecules

of liquids wander as mentioned in Art. 202. Gases mix in

the same way, but with greater rapidity.

216. Coefficient of diffusion. — The rate of diffusion of a sub-

stance in solution is proportional to the concentration gradient

of the solution (Graham's Law). Explanation: Consider a

vessel containing water, with crystals of soluble salt at the

bottom. This salt will dissolve, forming a solution which grows

less concentrated towards the top of the vessel. The concen-

tration is reckoned as grams of salt per gram of solution. Con-

sider the diffusion across an imaginary horizontal plane area a.

Let Ac be the difference in concentration at two points near the

plane, distant Ax the one above the other, then -r— or — is
Ax dx

called the concentration gradient aba. By rate of diffusion is

meant the number of grams of salt which diffuse across unit

area per unit time. Graham found this rate to be approximately
dc

proportional to — • The proportionality constant is called the

coefficient of diffusion of the salt in the given solvent.

217. Diffusion through membranes ; osmosis.— When two

liquids are separated by a porous membrane, it is found that

one of them— perhaps the one which wets the membrane
with the greater facility— diffuses through the membrane faster

than the other. This phenomenon is called osmosis. If the

liquids are two different aqueous solutions, the salts, being

different, pass through the membrane with unequal facility.
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Colloids pass through membranes very slowly and crystalloids

with much greater rapidity.

218. Semi-permeable membranes; osmotic pressure.—Some
membranes allow water to diffuse through them quite freely,

while salts in solution pass with difficulty. Such are called

semi-permeable membranes. If a solution of a salt be separated

from pure water by a semi-permeable membrane, water will pass

through the solution until the pressure of the solution exceeds

that of the water by a certain amount. This excess of pressure

is called the osmotic pressure of the solution. The conception

of osmotic pressure plays an important part in the theory of

solutions.



PART II.— HEAT.

>>*c

INTRODUCTORY REMARKS CONCERNING HEAT.

219. The principle of the conservation of energy is fully

established (as was clearly apprehended by Newton himself) for

a system conforming to Newton's laws of motion and to which

the conception of potential energy applies ; that is, a system such

that the work required to carry it from one position configuration

to another is independent of the intermediate stages through

which the system is made to pass. In treating moving systems

of finite dimensions it is convenient to ignore a very important

class of motions and mutual force actions; namely, the relative

motion of, and mutual force actions between, the small pa?'ts of

the moving bodies, or in other words molecular motion and

molecular forces. In such case it often occurs that the apparent

energy of a closed system decreases, the apparent decrease being

due to an increase of the energy of the ignored motion. Such

apparent decrease of energy always occurs when inelastic bodies

collide, and in moving systems affected by friction. It is perhaps

conceivable that a system of bodies might be completely treated

by the ordinary methods of mechanics, using Newton's laws of

motion and explicitly considering each individual particle, or

atom, in the system. The enormous number of molecules in

bodies of ordinary size leads, according to the theory of proba-

bility, to a high degree of constancy in their average behavior,

and this constancy of average behavior forms the basis of a

simple and efficient mathematical theory called Thermodynamics

which enables the phenomena depending upon molecular energy

151



152 ELEMENTS OF PHYSICS.

to be treated in a complete manner without explicit reference of

any kind to molecules.

Both laws of thermodynamics are essentially the result of

the constancy of the average behavior of molecules ; the peculiar

methods of thermodynamics do not appear, however, until

after the consideration of the second law. Let the following

serve as a partial example. Consider a given amount of air

in a vessel. The average distance between molecules, or what

amounts to the same thing, the volume occupied by the gas,

is a complete specification of the position configuration of

the system. The velocities of individual molecules are in all

directions and of all magnitudes, but since the energy of the

gas is definite, the average square of the molecular velocities

must have a definite value, and the temperature of the gas, which

is known to be proportional to this average square, is a complete

specification of the velocity configuration of the system. Thus

temperature and volume together completely specify the state of

molecular motion of a given amount of gas. The same is true

of any homogeneous liquid, and to a large extent also of solids.
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220. Definition of heat. — The energy stored in a body by virtue

of the state of its molecular motion* is called heat. For example,

energy communicated to a gas goes to increase the molecular

kinetic energy ; energy communicated to ice at the melting-point

causes some of the ice to melt, and the energy is used, perhaps

entirely, to alter the molecular configuration of the ice which

melts ; energy communicated to water warms it and is used in

part to alter the molecular configuration of the water and in part

to increase the molecular kinetic energy.

221. First law of thermodynamics. — The apparent loss of

energy in a closed system is always accompanied by the generation

of an amount of heat (see below for methods for measuring heat)

which is exactly equivalent thereto.

This law is to some extent involved in the above definition of

heat ; however, as a statement of observed fact it serves to

establish the definition of heat upon a sound basis. The ultimate

significance of the law is that molecules obey Newton's laws of

motion, that the conception of potential energy is universally

applicable, and that the principle of the conservation of energy

is entirely general. Compare Art. 219.

222. Effects of heat. — The effects of heat upon bodies are :

(a) To increase their temperature. This increase of temper-

ature is generally accompanied by expansion.

(b) To change their state of molecular aggregation— if enough

heat be applied disaggregation always results.

* The term molecular motion here and in subsequent articles refers to the " rela-

tive motions of small parts " of a body of which mention has been made in the

preceding introductory remarks concerning heat (Art. 219).

l 53
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(c) To dissociate the atoms in the molecules of chemical com-

pounds.

(d) To produce certain electrical phenomena (see chapters

on electricity).

223. Definition of equal temperatures.*—Two bodies are said

to be at the same temperature when no exchange of heat takes

place between them when they are placed in contact.

Note. — Two bodies A and B of which the respective temperatures are

equal to the temperature of a third body are found to suffer no exchange of

heat when placed in contact with each other. This is by no means axiomatic.

Note.— The temperature of a body A is greater than the temperature of

a body B, when upon bringing A and B into contact, heat passes from A to

B.

224. Gay Lussac's law. — Consider a glass bulb (Fig. 1
1 7)

containing a gas. This gas is separated from the outer atmos-

phere by means of a column of mercury.

The temperature of the vessel being changed and the pres-

sure upon the contained gas being maintained constant, the

/
HL

Fig. 117.

volume of the gas will change. By rise of temperature the

mercury column will recede before the expanding gas, and vice

versa. It is found when different gases are experimented upon

that by common change of temperature the change of volume

will be the same for all. This is the fact expressed in the first

clause of what is known as Gay Lussac's or Charles' law, viz.

:

*A rigorous numerical definition of temperature will be given under the Second

Law of Thermodynamics.
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(a) When various gases arc heated under constant pressure, they

all suffer the same expansion*

It has been stated in a previous article (167) that in a true

gas the volume is inversely proportional to the pressure to which

it is subjected (Boyle's law). We may therefore imagine the

experiment which we are considering to be carried out under

conditions such that the volume of the gas is maintained con-

stant, by continual variations of pressure, and the relations

between the pressure and temperature are noted.

The apparatus would then take the form shown in Fig. 118.

In this diagram A is the bulb of gas to be subjected to change

of temperature. Its volume is controlled and maintained con-

stant by means of a manometer of which M is the open arm

* In the second clause of his law Gay Lussac gave the numerical value of the

coefficient of expansion of a gas. His value, however, was incorrect and it is now
known that p : p' = 273 : 373 or v:v' = 2j^: 373 ; p and /' being the pressures of a

constant volume of gas at ice temperature and steam temperature (Art. 226) respec-

tively
; and v and v' are the volumes at ice temperature and steam temperature

respectively, of a gas of which the pressure is maintained constant.
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while P is an adjusting tube containing a cylindrical rod of iron

which may be submerged to any required extent in the mercury,

thus forcing the liquid over into M and m, and varying the

pressure. By means of this apparatus various gases may be tested

and the pressures (as measured by means of the length / of the

vertical column between a and b, plus 1 atmosphere) necessary

to maintain these gases at constant volume when change of

temperature occurs, may be observed. The results will give us

another statement of Gay Lussac's law which is more useful

for the purpose of our present discussion, viz. :

(b) All gases when Jieated without change of volume, follow

the same laiv of increase ofpressure with temperature.

225. Provisional definition of the ratio of two temperatures. —
The second form of Gay Lussac's law affords a convenient *

basis for the following provisional definition of the ratio of two

temperatures.

The ratio of two temperatures (provisionally defined) is the

ratio of the pressures of a constant volume of gas at those

respective temperatures. That is, / and p' being the pressures

of a given volume of gas at temperatures t and t' respectively,

we have by definition

•?=£• (I32)
t p

This provisional definition will be found to coincide with the

thermodynamic definition of temperature.

A definite numerical value cannot be assigned to any tem-

perature until an arbitrary value has been assigned to some

standard temperature or until an arbitrary numerical value has

been assigned to the difference between two standard tempera-

tures.

226. Standard temperatures. — Experiment shows that the

temperature of pure melting ice at a given pressure and that

the minimum temperature of pure steam at a given pressure

* Convenient because not dependent upon any particular gas.
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are invariable. These at a pressure of j6 cm. are chosen as the

standard temperatures of reference in thermometry and are

called the "ice point," I, and "steam point," 5, respectively.

Of the various effects of heat, mentioned in Art. 222, the

expansion which accompanies rise of temperature has been

found most suitable and convenient for the indication of tem-

peratures. Of the many substances available in thermometry,

the most useful are air, at constant volume, and mercury. The
instruments based upon the thermometric behavior of these two

materials are termed, respectively, the air thermometer and the

mercury thermometer. They are discussed in Art. 203 et seq.

227. The air thermometer.—A bulb A (Fig. 1 19) of hard glass,

filled with dry air, communicates, by means of a tube of fine bore,

with the short arm of a syphon barome-

ter BB. Since there is a vacuum at. V,

the distance / affords a measure of the

pressure of the air in A. An open mer-

cury reservoir R, which can be moved up

or down, connects with the barometer by

means of a flexible tube, and serves to

bring the surface of the mercury at a to

a marked point near the opening of the

fine tube. The bulb is placed in a bath

of melting ice, and the pressure p in A
is observed. The bulb is then placed in

a steam bath at standard pressure, and

the pressure p' in A is again observed.

Then from equation (132) we have :

/
It is customary to choose

S — I = 100.

(132 bis)

(133)

From these two equations, 5 and Fig. 119.
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may be calculated. It is found in this way, that 5 = 373, and

/ — 273, see Art. 224, footnote.

The values of / and 5 having been determined as above, any

other temperature T is determined as follows : The bulb A is

placed in a steam bath at standard pressure, and the pressure

p' in A is observed. The bulb is then placed in the region of

which the temperature T is to be determined, and the pressure

/" in A is observed. Then from (132) we have

S p"

T=^S. (134)

Note.— Temperatures determined in this way by the air thermometer are

called absolute temperatures, inasmuch as the zero temperature on this scale

is a temperature at which the pressure of a gas becomes zero, and is

A probably the absolute zero of temperature. The temperature reck-

)
ft
(( oned from the ice point, i.e. T — /, is nearly the same as tempera-

ture indicated by an ordinary centigrade mercury thermometer.

228. The mercury thermometer.— A glass tube AB
(Fig. 120) of fine uniform bore, having a bulb on one

end, is completely filled with mercury at a temperature

somewhat above the steam point and is hermetically

sealed at A. As it cools, the mercury contracts more

rapidly than the glass, and thus only partially fills the

stem. The whole is placed in an ice bath, and the

position of the surface of the mercury in the stem is

marked at /. In a similar manner the steam point is

marked at 5.

In the centigrade scale (Celsius), which is the scale

(universally used in scientific work, the distance SI is

subdivided into one hundred equal parts, which divis-

ions are continued above S and below /. These

pi- 120 .
marks are numbered upwards, beginning at /, which
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is number zero. The marks below / are numbered negatively

from /.*

Any temperature is specified by giving the number of the

mark at which the mercury stands when the thermometer is

brought to that temperature. For example, 65 ° C, read sixty-

five degrees centigrade, is the temperature at which the mercury

in a mercury thermometer stands at mark number 65 of the

centigrade scale
; 97 F., read ninety-seven degrees Fahrenheit,

is the temperature at which the mercury stands at mark number

97 of the Fahrenheit scale.

Temperatures, as indicated by a mercury thermometer, are

called mercury-in-glass temperatures.

229. Formal definition of mercury-in-glass temperature. —
Consider two mercury-in-glass temperatures / and t' ; let v and

v 1 be the volumes of the bore of a thermometer stem from / to /

and from I to t' respectively ; then

t v , .

This is evident when we consider that / and t' are the numbers

of equal divisions of a tube of uniform bore between / and t and

/ and /' respectively.

The relation between air-thermometer temperatures and mer-

cury-in-glass temperatures, where the glass is of the variety

known as Jena normal glass, is shown in Fig. 121. The curve

is drawn from measurements by Wiebe.

The abscissas are temperatures reckoned from the ice point.

Ordinates, measured from the horizontal line marked "air"

indicate the corrections which must be applied to mercury-in-

glass temperatures to give the corresponding air-thermometer

temperatures.

* The only other scale of which mention need be made is that of Fahrenheit, in

which the distance SI is subdivided into one hundred and eighty equal parts, which
divisions are continued above S and below /". These marks are numbered upwards,

beginning with the thirty-second mark below 7, which is number zero. The marks
below zero are numbered negatively.
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Remark.— All liquids and solids expand irregularly ; there-

fore the mercury thermometer must be considered strictly as a

scheme for naming temperatures. For purposes of simple speci-

fication, mercury-in-glass temperatures are entirely satisfactory.

2°.0

1°.0

o &O
u
DC

1*

o°.o

o
o Air

jjjS

Air

1°0 t; :mpERATURES

u
u 100' 300°

Fig. 121.

From Fig. 121 it is evident that no great errors will result

from the use of the indications of a mercury-in-glass ther-

mometer as true measures of temperature.

230. Standardization of a mercury thermometer. — The in-

dications of a mercury thermometer deviate from true mercury-

in-glass temperatures, (i) because of irregularities in the bore of

the stem, (2) because of errors in the location of the steam and

ice points, (3) because of irregularities in the divisions, and (4)

because of the use of glass having other than standard compo-

sition.

In the following discussion the thermometer is assumed to

be of standard glass and the thermometer scale is considered

to be simply a scale of equal parts.

(a) Observational data.

(1) The scale reading, a (Fig. 122), when the thermometer is

in an ice bath.

(2) The scale reading/, when the thermometer is in a steam

bath at observed pressure p
mm

\ The true temperature T of the

steam bath is then

T= ioo° C.-.0375 (76o-/), (136)
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providing p is not very different from j6omm\ This equation

(136) results from the observed fact that the tempera- ~

ture of a steam bath in the neighborhood of j6omm '

pressure, decreases .0375 degree centigrade for each

mm. decrease of pressure.

(3) Let v be the volume of the bore between a and/.

Let a portion of the mercury filament be detached,

of volume roughly equal to, say, \ v, so that placed

end to end four times it may reach very nearly from a

to /. Let this filament be placed with its lower end

at a and let the position of its upper end b be noted.

Then let it be placed with its lower end at b, and let

its upper end c be read, and so on. The readings thus

obtained are b, c, d, and e.

(b) Calculation of true mercury-in-glass tempera-

ture R corresponding to a given reading r. Assume

the bore of the tube to be uniform throughout each

section ab
y
be, cd, and df. Let x be the volume of the

detached filament ; then Fig.^22.

for since the tube is assumed uniform between d and fy
the

volume of the portion ef of the bore is -

—

—x, the scale being

one of equal parts. Similarly, the volume v' of the bore

between a and r is

r—c
d-

x. (138)

From equation (135) we have —=— , whence, substituting values
R. v

of v and v' from (137) and (138) and solving for R, we have

r— c
2 +
"7Z7r> 039)

e — a
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no
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from which x has disappeared. This formula differs according

to the position of the reading r. The assumed uniformity

of the bore of the stem

throughout the sections ab,

be, etc., leaves slight out-

standing errors; these are,

ljowever, very much smaller

than would result from an

assumed uniformity of bore

throughout. Such out-

standing errors may be in

turn eliminated by calibrat-

ing the respective sections.

How important such

calibrations of the tubes

of mercury thermometers,

which are to be used in

operations, really are, will

be seen from Fig. 123, in

which are shown graphi-

cally the irregularities of

the bore of an excellent

thermometer between 5 C.

and 95 C. Ordinates are

distances from the ice

point, and abscissas are

cross-sections of the bore,

in terms of that of the

average cross-section taken

as unity. It will be seen

that the ratio of the largest

cross-section measured to

1.042 _

.so .90

Fig. 123.

1.00

the smallest was
.976

1.068 (nearly 7 per cent).
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231. Expansion. — In a preceding article (222), various effects

of heat were mentioned. We are now ready to consider one

of these ; i.e. the changes of dimension which accompany

rise of temperature.

(a) Linear expansion. — The ratio j of the length /, of a body

at temperature / to its length / at o° C, is a function of t, and

its value is unity when /= o°C. Therefore, by Taylor's theo-

rem, j-=\+at+a ,

t
2+a"fi+Qtc, or,

/, = / (i+«/+ a72+ «''/3+ etc.), (140)

in which a, a', a", etc., are constants.

When / is not large, equation (140) may be written

/t
= / (l+at). (141)

The quantity a is called the coefficient of linear expansion of

the substance. The coefficient of linear expansion of a bar is

determined by measuring its length, / , at zero, and its length,

4, at an observed temperature /, in terms of that of a bar kept at

constant temperature ; a is then calculated from equation (141).

(b) Cubic expansion. — Let v be the volume of a body at

o° C, and v
t
its volume at temperature /; then, as in equation

(140), we have

^ = z/ (i+/3/+/372+ /3'73 +etc.), (142)

in which ft ft, ft'', etc., are constants.

When t is not large, equation (142) may be written

«V-«rfi+#>-% (143)
'

The quantity j3 is called the coefficient of cubic expansion of

the substance. The value of may be calculated from (143),

the volumes v at zero, and vt at observed temperature t having

been observed.

{c) Proposition.— The coefficient of cubic expansion of a sub-

stance is equal to three times its coefficient of linear expansion

;

that is

0=3*. (144)
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Proof. — Consider a cubical portion of a substance, of which

the edge is of length / at o° C. ; at f C. the length of its edge is

/ (i + <*/), so that vt
= l^ (1 -h(z)3= / 3

(1 +3«), since terms in a2/2

and a3/3 are negligible. Writing v for / 3
, in this expression we

have vt
= v

Q{ 1 -4- 3 «). Comparing this with ( 1 43) we have f3= 3 a.

(d) Variation of density with temperature. — Dividing the

mass of a body by v and vu we have its densities d and d
t
at

zero and at t° C. respectively, so that from (143) we have

or, since fit is small,

d
t =dii-&). (145)

232. Regnault's method for determining the coefiident of cubic

expansion of a liquid.— Two tubes, A and B, open at top, and

connected by an air tube C at lo^er end, are

filled with the liquid as shown in Fig. 124.

The tube A is placed in a bath at tempera-

ture /, and B in a bath at temperature zero.

The vertical distances / and lt are measured.

j

Since the pressure in C is equal to l^d^g

to l
t
dtgy

the ratio -j is equal to -~

and

Substitut-

Fig. 124.

ing j for -~ in equation (145), /? may be cal-

culated. The reader will see that by this

method, also, the series of coefficients /3, ft',

/3", etc., in equation (142) may be determined.

If it is desired to determine, say, two of these

coefficients, then the ratio — must be determined

for at least two temperatures t.

The following table gives the density of mercury determined

by Regnault's method, and also the volume, of one gram of that

liquid at various temperatures.
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TABLE III.

Tempera- Weight of Volume of Tempera- Weight of Volume of

ture. 1 cmK I GRAM. ture. I CM*. I GRAM.

o°C. I3-5956 0-073553 190 13-1385 0.0761 12

IO° •57°9 .073687 200 .1150 .076249

20 •5463 .073821 2IO° .0915 .076386

30° .5218 073954 220° .0680 .076523

40° •4974 .074088 23O •0445 .076660

5o° •4731 .074222 24O .0210 .076799

6o° .4488 .074356 250 12.9976 .076937

70° .4246 .074490 260° .9742 .077076

8o° .4005 .074624 27O .9508 .077215

90° .3764 •074759 28o° .9274 •077355

IOO° •3524 .074893 29O .9041 •077495

no° .3284 .075028 300° .8807 .077635

I20° •3045 .075162 3 IO° .8573 .077776

I30° .2807 .075297 320° .8340 .077918

I40° .2569 .075432 330° .8107 .078060

I5O •2331 .075568 340° •7873 .078202

160 .2094 .075703 350° .7640 •078345

170 .1858 •075839 36o° .7406 .078489

180 .1621 •075975

233. The indirect determination of the expansion of water and

of other liquids. — The expansion of a liquid may be studied by

Regnault's method (Art. 232), or indirectly by measuring its

volume in a vessel of glass of which the expansion has been

previously determined.

The volumes v and v
t
of a glass vessel at zero and f C,

respectively, can be easily determined from the observed net

weight of mercury contained by the vessel at the respective

temperatures and the known densities of mercury at zero

and t° C. Equation (143) then enables the calculation of /3.

The behavior of water, which shows marked peculiarities, con-

tracting when heated from o° to 4 , at which temperature its

density is a maximum, and expanding as the temperature rises

above the latter value, is indicated in Fig. 125, in which ordi-
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nates are volumes and abscissas are temperatures. The data for

this curve are taken from the accompanying table, which contains

1jC4 //
1.03

t/>

UJ

_J

1-
<

O>
UJ

H

z
1.02

1-
<
UJ

Q
X<

1.01

cc 5

. 1

TEMI>ERATURES

10° 0° 100
c

Fig. 125.

densities and relative volumes of water at temperatures between

- io° C and + ioo.° C.

TABLE IV.

Relative Densities and Volumes of Water (referred to 4°C.)

Tempera-
ture.

Density. Volume. Tempera-
ture.

Density. Volume.

- io° C. 0.99815 1.00 1 86 20° 0.998252 1.001751

- 8° 0.99869 1.00131 25° 0.997098 1.0029 1

1

- 6C 0.99912 1.00088 30° 0-995 7°5 1.0043 1

4

- 4° 0.99945 1.00055 35° 0.994098 1.005936

- 2° 0.99970 1.0003

1

40° 0.99233 1.00773

o° 0.999874 1.0001 27 45° 0-99035 1.00974

+ 1° 0.999930 1.00007

1

50° 0.98813 1.01201

2C 0.999970 1.000030 55° 0.98579 1.01442

3° 0.999993 1 .000007 6o° 0.98331 1.01697

4° 1.000000 1 .000000 65° 0.98067 1.01971

5° 0.999992 1.000008 70° 0.97790 1.02260

6° 0.999970 1 .000030 75° o.97495 1.02569

7° 0.999932 1.000068 8o° 0.97191 1 .02890

8° 0.999881 1.0001 19 85° 0.96876 1.03224

9° 0.999815 1.000185 90° 0.96550 I-03574

IO° 0.999736 1 .000265 95° 0.96212 1.03938

15° 0.999143 1.000858 IOO° 0.95863 1-04315
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234. Determination of the cubic expansion of solids.— Com-

parisons of the volume of the solids to be tested are made at

different temperatures by one of the following indirect methods.*

(a) The density of the solid is obtained at two temperatures

by method of weighing in air and in water. From these data

the ratio U. is derived.

(b) The solid is placed in a specific gravity flask the capacity

of which is known at the two temperatures for which v and vt

are to be found. The remainder of the bottle is filled at each

temperature with a liquid, the coefficient of expansion of which

is known, and the bottle is weighed. The weight of the empty

bottle and of the solid having also been determined, the weight

of liquid for which space remains at each temperature is thus

found, thence its volume and the volume occupied by the solid.

(c) The substance in the shape of a bar is placed within a

glass tube one end of which is closed. The open end of the

c
Fig. 126.

tube is then drawn out into a narrow neck (Fig. 126) and the

space within not occupied by the bar is filled with mercury. The
mercury expelled when the tube is heated affords an indirect but

very exact indication of the change of volume of the bar, and

thus of the coefficient of expansion.

* All of these methods depend upon a knowledge of the absolute expansion of

liquids (see Regnault's method, Art. 232).



CHAPTER X.

CALORIMETRY.

235. Heat is measured by means of its effect in raising tem-

perature. The substance used as a standard of comparison is

water, and the unit in terms of which the result is given is

called a thermal unit.

Thermal units. — The gram-calorie, which is the thermal

unit chiefly used in scientific work, is defined as the amount

of heat required to raise the temperature of one gram of water

one centigrade degree. This amount of heat is slightly vari-

able (see Art. 236), so that strict accuracy requires the initial

and final temperatures to be specified. Thus the gramcalorie

is understood to mean the amount of heat required to raise

the temperature of one gram of water from o°C. to i° C, unless

otherwise specified.

The British thermal unit is the amount of heat required to

raise the temperature of one pound of water one Fahrenheit

degree.

236. The mechanical equivalent of thermal units. — Accord-

ing to Joule, the British thermal unit is equivalent to 772

ft.-lbs. of energy. According to Rowland, 4.212 x io7 ergs of

energy are required to raise the temperature of one gram of

water from 5 C. to 6° C, and 4.179 x io7 ergs to raise the tem-

perature of one gram of water from ig°-S C. to 20°.5 C.

Remark.— Rowland's determination was made by driving a

rotatory paddle about a vertical axis at a determined speed, in

a vessel of water itself mounted on a vertical axis, and prevented

from turning by cords passing over fixed pulleys to weights.

168
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The torque exerted by the paddle is thus measured by the

product of the pull of the cord into the lever arm thereof. This,

multiplied by the angular velocity of the paddle and by the

time, gives the energy expended ; see equation (58). An
accurate thermometer, projecting through the hollow axle of

the paddle indicates the rise in temperature of the water.

237. The water calorimeter. — The number of thermal units

H, required to raise the temperature of W grams of water from

f to *", is

H= \V(t" -t'). (146)

The water calorimeter is a vessel containing water arranged

to absorb an amount of heat to be measured ; the rise in tem-

perature produced is observed by means of a thermometer,

and the amount of heat is calculated from equation (146).

Sources of error in the use of the water calorimeter.

(a) A portion of the heat imparted to the calorimeter is used

to raise the temperature of the containing vessel and the stirrer.

The vessel and stirrer, being of the same material, are equiv-

alent to an amount km of water, where k is the specific heat

of the material, and m is their combined mass. W+ km is

then to be used for W in equation (146). For accurate work,

the water equivalent of the thermometer bulb must also be

considered.

(b) When the calorimeter is cooler than room temperature, it

absorbs heat from its surroundings, and vice versa. This source

of error is, to a great extent, obviated by arranging that the

initial temperature of the calorimeter be as much below room

temperature as the final temperature is above room temperature,

and that the duration of the experiment be as short as possible.

The calorimeter is best made of thin, polished metal, and

surrounded by a thin, polished metal jacket, with air space

between to reduce to a minimum the interchange of heat

between the calorimeter and its surroundings. It usually takes
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the form of a cylindrical vessel CC (Fig. 127), mounted upon

points of some material which is a poor conductor of heat,

,

such as glass, .//is the jacket;

M is a solid, the thermal capac-

ity of which is to be determined.

(c) In a vessel of water which

is being heated, there are always

large local differences of tem-

perature. In order that the

indications of the thermometer

be accurate, brisk stirring is

necessary.

238. The ice calorimeter. —
To change one gram of ice at

the freezing point into water at

the same temperature 80 gram-

d \

A
_

Fig. 127.

calories of heat are required. An amount of heat may there-

fore be measured by determining the amount of ice it will melt.

The amount of ice melted may be determined by weighing the

ice water or by observing the decrease in volume.

The latter method is that employed in the ice calorimeter of

Bunsen. This instrument, which is probably the most sensitive

of all calorimetric devices, is shown in Fig. 128. It consists of

a glass tube T, within which a smaller tube, in shape and size

similar to the ordinary "test tube" of the chemist, is sealed.

The latter receives the material m, which has previously been

heated to a known temperature, and which is to be tested.

The upper part of (T) is completely filled with water from

which all air has been removed. The lower part is filled with

mercury which fills also the narrower tube (/) and a part of the

capillary neck (n). Before the determination the calorimeter

is packed in a bath of melting ice. The receiving tube is then

filled with a freezing mixture by the action of which it becomes

encased with ice. The increase of volume drives mercury from



HEAT. 171

( T) and produces a movement of the mercury column in («).

The freezing mixture having been removed from the receiving

tube the calorimeter is kept in its ice bath until the end of the

mercury column comes to rest. The heated substance is then

introduced into the receiving tube. The heat which it imparts

in cooling to the ice temperature is all employed in melting the

surrounding bulb of ice. The decrease in volume, which is

indicated with great precision by the retreat of the mercury

column in the neck (//), affords a measure of the mass of ice

which is melted, and so, indirectly of the thermal capacity of m.

Fig. 128.

239. Specific heat. — The number of thermal units required

to raise the temperature of unit mass of a substance 1 degree

is called the specific heat of the substance.
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TABLE V.*

Specific Heats of some of the Common Elements.

Substances. Temps. Sp. Heat. Substances. Temps. Sp. Heat.

Aluminium . o°-ioo° 0.2185 Manganese . Hc- 97° 0.1 21

7

Antimony . . . Oc-IOO° o-495 Mercury . .
20°- 50° 0.0331

Bismuth .... 20 - 84 0.305 Nickel. . . i4°- 97° 0.109

1

Cadmium . . . o°- roo° 0.1804 Phosphorus

:

Carbon (diamond) o°-ioo° 0.145 (Red) . . 15 - 98 0.1698

" (graphite) oc-ioo° 0.186 (Yellow) .

pC ~,fO 0.202

Copper .... o°-ioo° 00933 Platinum . o°-ioo° 0.0323

Cold o°-ioo° 0.0316 Silver . . . o°-ioo° 0.0568

Iron o°-ioo° 0.1130 Sulphur . . 150- 97° 0.1844

Lead o°-ioo° 0.0315 Tin .... o°-ioo° 0.0559

Magnesium . . . 20°- 51° 0.245 Zinc . . . o°-ioo° 0.0938

TABLI: vi.

Specific Heats of Compounds.

Substances. Temps. Sp. Heat. Substances. Temps. Sp. Heat.

Bell metal . . . 15 - 98 0.085 Glass

:

Brass o° 0.089 (Plate) . io°- 50 0.186

Bronze .... 20°-I00c 0.1043 (Crown) . io°- 50 0.161

(SS.7cu.-M 1.3 al.) (Flint) . . io°- 50 0.117

Cerman silver . o°-ioo° 0.0946

Paraffin . . io°- 1

5

0.562

Quartz .... 20°- 5O 0.186 Wax . . . 26 - 42 0.82

Granite .... I2°-IOO° 0.190 Vulcanite . . 20°-IOO° 0.331

Marble .... 18 - 99° 0.208 Ice .... -30 - o° 0.505

In the above table the temperatures between which the sub-

stances were tested, or to which the value of the specific heat

applies, is given in each case. This is important because the

specific heat of most {probably of all) substances varies with the

temperature. The general character of the influence of tem-

* For more complete data, see Landolt and Bornstein, Physikalisch-chemische

Tabelicit.
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perature upon thermal capacity may be illustrated by reference

to the case of carbon in the form of the diamond, a substance

the specific heat of which has been studied at various tempera-

tures between — 50 C. and + 1000 C, and of iron, which has

been tested through almost as great a range. The changes are

indicated graphically in Fig. 129 by means of a curve, the

0.1
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800°

ordinates of which are specific heats, and the abscissas tem-

peratures.

In the case of water, which is of special interest, because

that substance is taken as a standard of reference in nearly all

calometric determinations, the influence of temperature upon
specific heat is much less marked than in the two examples just

cited. That it is appreciable, however, will be seen from the

following table, which gives the specific heat of water at various

temperatures in terms of that at 15 as unity.



174 ELEMENTS OF PHYSICS.

TABLE VII.

Specific Heat of Water.

Tempera-
ture.

Sp. Heat.
Tempera-

ture.
Sp. Heat.

o° i .00664 1
6°

0.99983

2° 1.00543 1
8°

0.99959

4° 1.00435 20c 0.99947

6° 1-00331 22° 099955
8° 1.00233 24° 0.99983

IO° 1.00149 26° 1 .0003

1

12° 1.00078 28° 1.00098

14° 1.00023 30° 1.00187

240. Method of mixtures. — The method usually employed

for the measurement of specific heat is known as the method

of mixtures. The substance, weighing vS grams, is heated to a

temperature /, quickly plunged into a water calorimeter at tem-

perature /', and the final temperature /" of the mixture is

observed. The heat given off by the 5 grams of substance in

cooling from / to t
n

is equal to the heat absorbed by the water

of the calorimeter in being heated from t' to /". This, by

equation (146), is W(t" — t'). Therefore the specific heat of

the substance is

Sp. Heat= lV(t"-t')
(147)

The specific heat is the number of thermal units given off by

one gram of the substance cooling through one degree.

241. Heat of combustion. — Chemical action is in general

accompanied by the generation or the extinction of heat. Those

chemical reactions during the progress of which heat is gen-

erated are called exothermic reactions. Those reactions during

the progress of which heat is absorbed or extinguished are

called endothermic reactions. Combustion is the most important

case of exothermic reaction. The heat generated per unit mass
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of a substance burned is called the heat of combustion of that

substance.

The method of measuring heats of combustion is analogous

to that for specific heat. On
account of the very great

volume occupied by the gas-

eous products of the chemical

reaction, however, it is neces-

sary to employ a special form

of calorimeter. This usually

consists of a metallic vessel

aa (Fig. 130), containing a

smaller one, A, within which

the process of combustion is

carried on, and a hollow spiral

coil through which the prod-

ucts pass at such a rate that

they will be cooled to the

temperature of the water which

surrounds both the coil and the

combustion chamber.

The calorimeter proper, aa>

is surrounded by a system of double jackets, dd, containing

swan's-down, and ee, a water jacket.

The accessory parts, by means of which complete combustion

is secured, are not shown in the diagram. The heat of com-

bustion of certain substances is given in the following table.

Fig. 130.
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TABLE VIII.

Heat of Combustion.

Substance.
Product

of

Combustion. % 3

X g

Substance.

O

O c/j

Q 05

O £ X %

Carbon (diamond) . CO2 7770 Illuminating gas . 5200 to 6365
" (graphite) . CO-2 776210 8137 Raw petroleum . .

— 1 1094

Hydrogen .... H 2 347°° Refined petroleum — 1 1045

Magnesium . . . MgO 6010 Gunpowder . . .
— 508 to 807

Phosphorus (yellow) P2O5 5747 Gun cotton . . .
— 1056

Sulphur S02 2220 Dynamite. . . .
— 1290

Various woods . .
— 4100 to 4500 Methane (CH4 ) .

— 13063

Charcoals .... — 7071 to 8080 Benzol (CeHc) . .
— 10000

Soft coals .... — 7400 to 8800 Methyl alcohol .
— 5307

Anthracite .... — 7844 Ethyl alcohol . .
— 7183

242. Changes of state with rise of temperature.— When heat

is imparted to a solid, the temperature rises until the solid

begins to melt. The temperature then remains constant until

all of the substance is changed into the liquid state, when it

begins to rise again and continues to rise until the liquid boils.

The temperature then remains constant until the liquid is

entirely changed to vapor, when it once more begins to rise.

There are thus two periods during which heat is imparted to

the substance without producing rise of temperature. These

are called respectively the melting point and the boilingpoint.

The melting point may be further defined as the temperature

at which the solid and liquid forms of the substance are capable

of existing together in equilibrium. This temperature varies

but slightly with pressure. The variation may consist either in

a lowering of the melting point with pressure (case of all bodies

which like ice expand upon freezing), or it may consist in a raising

of the melting point (case of bodies which expand upon melting).
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The following table gives the melting points of some solids at

76 cm. pressure.

TABLE IX.

Melting Points of Various Solids.

I. Elements.

Substance. Temperature Substance. Temperature.

Aluminium

Antimony

Bismuth .

Bromine

Cadmium

Chlorine

Cobalt

Copper

Gold .

Iodine

Iridium

Iron .

Lead .

Magnesium

Manganese .

Ethylen (C2H4) . . .

Ammonia (NH3) . .

Carbon monoxide (CO)

Carbon dioxide (CO2) •

Carbon disulphide (CS2)

Hydrochloric acid (HC1)

6oo°-850° *

425°-45°°

260

7°-3

315°

-102

I5oo°-i8oo°

io5o°-iioo°

i030°-i250°

115°

6

i95o°-20oo°

I200°-l800°

325°

75o°-8oo°

1900 (?)

Mercury

Lithium

Nickel . .

Nitrogen .

Osmium

Phosphorus

Platinum .

Potassium .

Selenium .

Silver . .

Sodium

Sulphur

Tellurium .

Tin . . .

Zinc . . .

II. Compounds, etc.

-169

- 75°

-207
- 57°

Methane (CH 4 ) . .

Nitrous oxide (N20)
Sulphur dioxide (SO2)

Sulphuretted hydrogen

(H2S)

-39°

180

i476°-i5i7°

-203°-2I4°

2500 (?)

44° 3

17570-1780°

62°

217°

90^

"3°

45 2°-5 2 5
c

226°

40OQ-420c

185°

99°

76°

91°

III. Alloys.

Lead 46.7%; Tin 53.3% + 197° Wood's metal (Cd.

Britannia metal (Zn. 12.5%; Sn. 12.5%;

82%; Sb. 18%) . . + 250° Pb. 25% ; Bi. 50%) . + 70°

Rose's metal (Sn. 25%

;

Pb. 25%; Bi. 50%) . + 95°

* Where two values are given, authorities differ as to the melting point,

happens chiefly in the case of very high and very low temperatures.

N

This
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243. Minimum temperature of a vapor at a given pressure and

maximum pressure of a vapor at a given temperature. — {Defini-

tion of boiling point.) The vapor of a given substance under

given pressure condenses to a liquid if an attempt is made to

cool it below a certain minimum temperature. This tempera-

ture is called the boiling point of the liquid at the given pressure.

The temperature at which a liquid boils at a given pressure is

usually somewhat higher than its true boiling point, partly

because of increased pressure in the liquid due to gravity, and

partly because of the fact that vapor can only be formed at the

surface of the liquid or at some surface of discontinuity in the

liquid, e.g. on dust particles, etc.

The vapor of a given substance at given temperature condenses

to a liquid if an attempt is made to increase its pressure, e.g. by

compression, beyond a certain maximum value.

The relations between the pressure and temperature of water

vapor and the vapor of ammonia respectively are given in the

following tables, and graphically in Figs. 131 and 132.

TABLE X.

Pressure and Temperature of Saturated Aqueous Vapor.

(From - io° C. to + 230 C).

Pressure Pressure Pressure Pressure
Temp. in Centi- Temp. in Centi- Temp. in Centi- Temp. in Centi-

meters. meters. meters. meters.

- io°C. 0.2151cm 55° 11.7516 cm. ioi cC. 78.757 cm. 150 358.123 cm.

- 5° 0.3160 6o° 14.8885 102 81.601 i55c 408.856

o° 0.4569 65° 18.7103 103 84.528 160 465.162

+ 5° 0.6507 70 23-330% 104° 87-54I 165° 527-454

IO° 0.6971 75° 28.8764 105 90.641 170° 596.166

15° 1.2674 8o° 35-4873 110° io7-537 175 67I-743

20° I-7363 85" 43-3I94 115° 126.941 180 754.692

25° 2.35 J 7 90 52.5468 I20° 149.128 185 845-323

30° 3.1510 95° 63-3657 125° 174.388 190 944.270

35° 4.1784 96 65-7396 1 3
0° 203.028 195° 1051.963

40° 5-4865 97° 68.1879 135° 235-373 200° 1168.896

45° 7.1362 98 70.7127 140 271.763 2IO° 1432.480

5o° 9.1978 99° 73.3160 145° 312.555 220° 1739.036

ioo° 76.0000 23O 2092.640



HEAT. 179

2000.

1500.

1000.

600.

WAT ER V ^POR

j

//

co
DC
UJ
1-
UJ

1

2
UJ

/
UJ /en

CO
CO

1

a.

100°

Fig. 131.

300°



i8o ELEMENTS OF PHYSICS.

60 /

/

50 /
/

Ul
cc

Q.
</>

O

**

/

t-<
2 SO

Hi
cc

o/
to/

*
7/

3
to

LU
a20
Q.

/
/

10

TE VIPER MURE ;s

-20° 0° 00° 40° 60° 80° 100

Fig. 132.

TABLE XL

Pressure and Temperature of Saturated Vapor of Ammonia (NH
3 ).

(Regnault).

Temp.
Pressure

in Atmospheres.
Temp.

Pressure
in Atmospheres.

- 30° C. i. 14 atm. 50° 19.95 a'm -

- 20° 1.83 6o° 25.63

- IO° 2.82 70° 3247
o° 4.19 8o° 40.59

IO° 6.02 90 50.14

20° 8.41 IOO° 61.32

3o° "•45
40° 15.26
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The following are the boiling points of various liquids at

76 cm. pressure

:

Substance.
Boiling

Point. •

Substance.
Boiling

Point.

Bromine

Chlorine

Mercury

Nitrogen

Oxygen

Phosphorus

Selenium

Sulphur

Zinc

Ethylen (C
2
H4)

Carbon disulphide (CS
2)

Cyan (CN
2 )

Methane (CH4) ....

63.°C.

- 33-° 6

357° 25

- i93-°

- 184.

285°

665.

448.°4

929.

- 102°

46.°04

- 20.°7

- 1 64°

Nitrous oxide (N.
20) . . .

Nitric oxide (NO) . . .

Sulphuretted hydrogen

(H
2S).

Sulphur dioxide (S0
2) . .

Acetic acid

Alcohol (ethyl) ....
Alcohol (methyl) ....
Benzol

Chloroform

Glycerine

Pentane (M)

- 88.° 8

-153-° 6

- 63.° 5

- IO.°

- ii8.°i

78.° 40
66.°

80° 36

51° 20

290°

j7-

244. Heat of fusion and of vaporization. — When heat is

applied to a substance which is melting or is in ebullition, the

temperature remains constant because the heat-energy imparted

to the substance is employed in producing the change of state.

The heat offusion, according to the above statement, is the

number of thermal units required to change unit mass of the

solid at its melting point into liquid at the same temperature.

That the heat of fusion, which is capable of definite and direct

determination, is much greater in the case of water than with

other substances, will be seen from the following table

:

TABLE XII.

Heat of Fusion of Various Substances. *

Bismuth 12.640 cal. Mercury 2.82

Bromine 16.185 Paraffin 35- IO

Cadmium 13.660 Phosphorus 4-744

Glycerine 42.50 Platinum 27.18

Ice 79-25 Silver 21.07

Iron 33-5° Sulphur 9-365

Lead 5.858 Tin I3-3H
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The heat of vaporization of a liquid is the number of thermal

units required to change unit mass of that liquid at its boiling

point into vapor at the same temperature. This quantity, also,

is capable of direct measurement.

245. Determination of the heat of vaporization. — The appa-

ratus employed in the measurement of the heat of vaporization

is a calorimeter containing a

hollow spiral and an inner re-

ceptacle. Vapor is sent into the

spiral, where it is condensed,

and the liquid thus produced

gathers in the receiver, whence

it is subsequently removed and

weighed.

Fig. 133 shows the essential

features of one of the best

known forms of apparatus, that

of Berthelot.

The liquid is heated in the

vessel F, whence its vapor

passes through the inner tube

to the spiral. Here it con-

Fig
-
133 - denses, warming the surround-

ing water of the calorimeter, and is collected in the receptacle R.

The following table gives the heat of vaporization of various

liquids

:

TABLE XIII.

Alcohol (ethyl) 208.92 cal. Ether (C4H 10 ) • 91.II

Ammonia (NH3) . 294.21 (at 7 . 8) Iodine .... 23-95

Benzol .... 93-45 Mercury . . 62.00

Bromine .... 45.60 Sulphur dioxide . 91.7 (ato°)

Carbon dioxide

.

56.25 (at 0°) Water .... 535-9

Carbon disulphide . 86.67

Chloroform . . . 58-49



HEAT. 183

246. Relation between heat of vaporization and temperature.—
The heat of vaporization depends upon the temperature at

which ebullition takes place, diminishing rapidly as the tem-

perature rises. In the case of each liquid it is supposed that

the heat of vaporization would become zero at the highest tem-

perature at which the substance in question is capable of exist-

ing in the liquid state. In point of fact it has been found by

means of experiments upon liquids heated in closed tubes, that

at a definite temperature which is constant for each liquid, the

surface film disappears and it becomes impossible to distinguish

between the liquid in the bottom of the tube and the saturated

atmosphere of vapor above it. The temperature at which this

change occurs is called the critical temperature.* The identity

of the critical temperature as above defined and the temperature

at which the heat of vaporization vanishes has not been experi-

mentally established. It is, however, known that the heat of

vaporization of such liquids as have been investigated dimin-

ishes rapidly throughout the entire range of temperatures to

which the experiments have been extended. Thus the heat of

vaporization of water is 606.5 at o°, 535.9 at ioo°, and 464.3

at 200 .

In the following table the critical temperatures of certain

substances are given

:

TABLE XIV.

Critical Temperatures of Various Liquids.

Alcohol (ethyl) . . .

Ammonia (NH3) . .

Benzol

Bromine

Carbon monoxide (CO)
" dioxide (CO2) .

Chlorine

Chloroform . . . .

Methane (CH4) ....
Nitrogen

Nitrous oxide (N20) . . .

Oxygen

Sulphuretted hydrogen (H2S)

Sulphur dioxide (SO2) . .

Turpentine oil

Water

- 8i°C.
- 146

35°-4

- 118

ioo°

156

376°

358° (365 ?)

* For a description of the classical experiments of Andrews upon the critical tem-

perature, see Philosophical Transactions 1869, II. p. 575; also Preston, Theory of

1 1 eat, p. 372.
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247. Evaporation. — A liquid at a given temperature continues

to evaporate so long as the pressure of its vapor is less than the

maximum pressure at the given temperature. This is true,

whether the space above the liquid is rilled with vapor alone, or

with vapor mixed with any gases at any pressure. See Arts.

248, 254.

248. Hygrometry. — The condition of the atmosphere in

regard to the moisture it contains is characterized by the

following quantities— not all independent.

" Force of vapor." The pressure of the atmosphere is due

in part to each of its constituents. According to Dalton's Law
(Art. 254), the pressure due to each constituent is equal to the

pressure which would be exerted by that constituent if it occu-

pied alone the whole space. That part of the atmospheric

pressure which is due to water vapor is called in meteorology

"Force of Vapor." This pressure varies from zero to 30 mm.

or more.

The dew point is the temperature to which the atmosphere

must be cooled in order that the water vapor present may be

saturated. The atmosphere at the dew point is said to be satu-

rated with moisture.

The relative humidity of the atmosphere is the amount of

water vapor in the air expressed in hundredths of what the air

would contain were it saturated at the given temperature.

The absolute humidity is the actual amount of water in the

air, generally expressed in grams per cubic meter of air.

The experimental determination of these various quantities is

called Hygrometry. The method most employed is by use of

wet and dry bulb thermometers, from the readings of which the

various quantities may be determined from empirical tables.



CHAPTER XI.

THE PROPERTIES OF GASES.*

249. Restatement of Gay Lussac's Law. — From Arts. 224,

225, and 227, we have

:

(a) The pressure of a constant volume of any gas is propor-

tional to its absolute temperature, f

This, together with Boyle's Law (Art. 167), gives :

(b) The volume of a gas is proportional to the absolute temper-

ature, the pressure being constant, f

The laws of Boyle and Gay Lussac may be embodied in the

following formula ; viz.,

pv= RT, (148)

in which/ is the pressure of a gas, v its volume, T its absolute

temperature, and R a proportionality factor depending upon the

quantity and nature of the gas. This equation completely

expresses both Boyle's and Gay Lussac's laws.

250. Another important law of gases which should be stated

here is the law of multiple volumes in the chemical combination

of gases (Berzelius); viz. : The ratios of the volumes, reckoned at

same temperature and pressure of two or more gases which enter

into chemical combination, are simple and rational. For exam-

ple, one volume of hydrogen and one volume of chlorine com-

bine to form HC1 ; two volumes of hydrogen and one volume

* See Art. 167 et seq. for statement of Boyle's Law.

t These statements involve both the absolute statements given in Art. 224, and

the provisional definition of temperature given in Art. 225. They are therefore

slightly misleading inasmuch as they make it appear that temperature has been

previously and independently denned.

185
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of oxygen combine to form water ; ammonia upon dissociation

gives three volumes of hydrogen and one volume of nitrogen.

Other experimental facts concerning gases will be given

in the course of the following development of the kinetic

theory.

251. Kinetic theory of gases. Fundamental assumptions.—
The laws of Boyle and Gay Lussac are satisfied if we assume a

gas to consist of a large number of very small moving particles

— molecules— which rebound with unchanged * velocity when
they strike the walls of the containing vessel, which are so small

as seldom to collide with each other, and which exert no per-

ceptible mutual attraction.

The kinetic energy of such a system of particles is constant,

therefore the average square, co
2

, of the velocities of the particles

is constant and definite. Let / be the pressure of the gas in

§£-, v the volume of the containing vessel, N the total number

of particles, H i = —
j
the number of particles per cubic centi-

meter, and m the mass of each particle. Then we have

p = ±nmco2 (i49)

or p = \ . (150)
v

Proof.— The square of the velocity of a given particle is equal

to the sum of the squares of the x, y, and z components of its

velocity. Therefore the sum of the squares of the velocities

of all the particles is equal to the sum of the squares of all the

^-components, plus the sum of the squares of all thej/-compo-

nents, plus the sum of the squares of all the ^-components. The

particles move at random in all directions, so that the sum of

the squares of the ^--components, of the 7-components, and of

* When the walls of a vessel are hotter than the gas, the molecules rebound with

increased velocity, and vice versa.
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the ^-components are equal each to each. Therefore (a) The

sum of the squares, No)2
, of all the velocities is equal to three

times the sum of the squares of the x-components.

Imagine the containing vessel to consist of two parallel walls,

of area q, distant d from each other, perpendicular to the ;r-axis

of reference, and between which the gas is confined. Only the

^'-components of the molecular velocities contribute, by impact,

to the pressure on these walls, so that the y and z components

may be ignored. Consider a single particle, the .^-component

of whose velocity is a. This particle strikes first one wall and

then the other, traveling back and forth— times per second.
2 d

At each impact the velocity of the particle changes by 2 a, that

is, from + a to — a, or the momentum of the particle changes

by 2 am. Therefore momentum is lost on each wall by the

impact of this particle at the average rate -^— x 2 am, or — a2
,2d d

which is the average force exerted on the wall by this particle.

That is, the force on one wall, due to one particle, is equal to —
d

times the square of its ^--velocity component. Therefore the total

force F, exerted on the wall by all the particles, is equal to —
d

times the sum of the squares of their .r-velocity components.

Therefore F = ~ ± co
2JV; see (a). Dividing by q, and putting

7 1 F , Nmco2

qd = v, we have —=p = \ .

q v

252. Further assumption. — The absolute temperature of a

gas is assumed to be proportional to \ moo2
, i.e. to the average

kinetic energy per molecule. In accordance with this assump-

tion, we may write R T ior \ Nmco2 in equation ( 1 50), R being a

proportionality factor. Equation (150) then becomes pv=RT
y

which, being identical to equation (148), shows that a gas may
be considered to be such a system of particles as has been

described. The various assumptions are therefore justified.
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253. Calculation of a>. — Solving equation (149) for co, we

have co = \IA£. The product nm is equal to the density of the
* nm

gas, therefore easily observed, as is also /, so that co may be

calculated.

Example.— The density of hydrogen gas at o° C, and under a

pressure of 1,01 3,373 1£~( = 760 mm.) is 0.00C08954 g^s
. There-

fore, at 0° C. the square root of mean square of the velocity of

hydrogen molecules is 184,260
cm.
sec.

254. Dalton's law.— A mixture of gases, having no chemical

action on each other, exerts a pressure which is equal to the sum

of the pressures which would be produced by each gas separately,

provided it occupied the containing vessel alone at the given tem-

perature. The kinetic theory is entirely consistent with this

law, since the moving particles are assumed so small that they

do not interfere with each other in any way.

255. Avogadro's principle.— The molecular theory, as devised

to explain the law of multiple proportions in chemistry, together

with Berzelius' law (Art. 250), indicates pretty clearly that all

gases contain the same number of molecules per cubic centimeter

at the same temperature and pressure. That this is consistent

with the kinetic theory of gases, may be shown as follows

:

Consider two gases. Let pv uv mv and co
x

2 be the pressure,

number of particles per cubic centimeter, etc., of the one, and

p2 , n2, m2 , and co
2
2 the corresponding quantities of the other gas.

Then p\ — \ n^m^^, and p2
= \ n

2
m

2co2
2 from equation (149). If

p1
=p2, and if the temperatures of the gases are equal, requiring

m^co^ to be equal to m
2
co

2
2 (see Art. 252), then n

x
= n

2
.

256. Deviation of gases from Boyle's law. — All gases devi-

ate more or less from Boyle's law. Such gases as carbon

dioxide, alcohol vapor, etc., which have complex molecules, gen-

erally show the most marked deviation. Two, in particular,

of the fundamental assumptions of the kinetic theory seem not
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to be strictly satisfied by gases, viz. : (a) That the particles

are so small as seldom to collide, (b) That the particles exert

no mutual attraction.

(a) Effect of size of molecules. — If the moving particles have

any size, collisions and impacts take place before the centers

of the particles are coincident, or before the centers of the

particles are in the plane of the wall of the containing vessel.

Shorter distances are thus traversed between collisions and

impacts, which are therefore more frequent, and the pressure

is greater than it would be if the particles were indefinitely

small. The result is very much as if the volume of the con-

taining vessel were smaller by a constant amount, b, than it

really is. Equation (148) may be modified so as to take account

of this deviation, by writing v — b for v. The value of b

depends upon the amount and nature of the gas, and its value

for one gram of a gas is called the molecular volume of the gas.

(b) The effect of mutual attraction of particles is to slow up

the particles as they come into the layers of the gas adjacent

to the walls. The attraction of the walls is constant and need

not be considered. This slowing up of the particles makes

the pressure of the gas less than it would otherwise be, by an

amount which can be shown to be proportional to the square

of the density of the gas or inversely proportional to the

square of its volume. Equation (148) may be modified, so as

to take account of this deviation, by writing p + — for p. The
zr

quantity a is a constant for a given amount of a given gas.

Equation (148) therefore becomes

This equation is due to van der Waals.

257. Joule's and Thomson's experiment. — That the mutual

attraction of the particles of a gas must be very small, was

first shown by Joule. He placed a two-chambered vessel in
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a water calorimeter and found no perceptible rise or fall

in temperature of the calorimeter when gas which had been

compressed in one chamber was allowed to escape into the

other, which was empty, by opening a cock. If the gas parti-

cles attract each other, they would lose some of their velocity as

they move apart and the temperature would on the whole fall,

and vice versa.

Joule and Thomson afterwards experimented with gases,

allowing expansion to take place as the gas passed through

a porous plug in a pipe. In case of molecular attraction, a

cooling takes place as the gas passes the plug, and vice versa.

Most gases showed slight cooling, and hydrogen alone was

slightly warmed as it passed the plug. Hydrogen molecules

at ordinary temperature and pressure, therefore, must be con-

sidered to repel each other slightly, so that for hydrogen the

quantity a in equation ( 1 5 1
) is negative.

258. A perfect gas. —A gas which follows Boyle's law strictly

is called a perfect gas. The only energy in a perfect gas is

the kinetic energy of its molecules. All gases whatever are

perfect when highly rarefied. All simple gases, that is, gases

of which the molecule is not complex, follow Boyle's law with

a high degree of exactness even at ordinary temperatures and

pressures. All the following calculations refer to perfect

gases.

259. Clausius' ratio.— In the development of the kinetic

theory of gases only translatory motion of the particles has

been considered. All gas molecules are capable also of rotatory

motion and vibratory motion. A part of the kinetic energy of

a gas is due to translatory motion and is called transla-

tional energy, and part is due to rotatory and vibratory motion

of the molecules and is called intramolecular energy. It was

first pointed out by Clausius that the ratio of translational

energy to intramolecular energy is constant for a given gas.
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This ratio is called Clauses' ratio. The translational energy

of a gas is J Nmco
2

, the intramolecular energy is |, o-JVmoo
2
, and

the total energy is £(1 + o-)Nmco2
, in which <r is Clausius' ratio.

260. Two ways of imparting energy to a gas.

(a) Energy may be imparted to or extracted from a gas as

heat by allowing the gas to come into contact with a hotter or

colder body. Throughout this chapter heat is understood to be

expressed in ergs.

(b) Energy may be imparted to or extracted from a gas as the

work done upon the gas in compressing it or by the gas as it

expands. Let A W be the work done upon a gas at pressure p
during a decrement of volume Av, then

AW=-p-Av. (152)

The negative sign is chosen for the reason that Av is here

negative, being a decrement, and it is desired to consider AW as

positive when it represents work done upon the gas.

261. The two bulk moduli of a gas.— Let Av be the decrement

of volume of a gas produced by an increment of pressure Ap, v
Av

being the initial volume. Then— is the isotropic strain pro-
v

duced by the stress A/, and Ap I— is the bulk modulus of the

gas. If no heat is allowed to escape from the gas, the work done

upon the gas during compression causes a rise in temperature.

Therefore the decrement of volume, Av, is less if no heat is

allowed to escape than it is if the gas is compressed slowly and

the heat allowed to escape so as to prevent a rise in temperature.

The bulk modulus of a gas has therefore two important values.

(a) The modulus, M
e , corresponding to compression without

loss of heat, called the isentropic* modulus.

(&) The modulus, M
t , corresponding to compression without

change of temperature, called the isothermic modulus.

* For the reason that what is called the entropy of the gas remains unchanged
during such compression.
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All substances have these two-bulk moduli, but it is only for

gases that they are perceptibly different in value.

262. Proposition. — The ratio —

-

e
is equal to 5 + 3°"

in whichM
t

4
3 + 3 *

a is Clausius' ratio. That is,

Sr* (I53)

where k = 5 + 3
°"

t ( i «U

)

3 + 3 *

Proof.— (a) Isothermic modulus.— At constant temperature

NmaP is constant, therefore differentiating equation (150) we

u a^ 1 Nina? A ... . ... • .r 1 NmoPhave A/ = — ^ — As; ; writing in this expression / for ^

and solving for

v

we have M
t
= —p. 055)

(£) Isentropic modulus. — During the decrement of volume,

work equal to —pAv is done upon the gas. This work goes to

increase the total kinetic energy,
j (1 + <r) Nina2

, of the gas.

This increase in kinetic energy depends upon an increase in a),

since a, N, and m are constant. Therefore

—pAv= ( 1+ o-) Nm<o • A». (156)

The increase in pressure accompanying this compression is in

part due to the decrement of volume and in part due to the

increment of ay. Differentiating equation ( 1 50) first with respect

to ft) and then with respect to z>, we have

A . 9 A7
/;/ &) • Ag) -, Nina? • Av , , „ ._*

A/= j \ ?
—

.

(.57)
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Substituting the value of Nm<o . Aa> from ( 1 56) and the value

p=\—— from (150) in (157) and solving the resulting equa-
v

tion for Ap/—(=Me), we have

M = -$ + 3±-/>. (158)
3 + 3<r

From (155) and (158) we have at once MJ

M

t
— k.

263. Application of the above principles to the question of the

velocity of sound. — Newton showed that the velocity, V, of

sound in a substance is

v=yjf, (.59)

in which p is the density of the substance. Newton calculated

the velocity of sound in air from this equation, using the iso-

thermic modulus. The velocity thus found is much less, in the

ratio of 1 : V#, than the velocity given by observation. LaPlace

was the first to point out that the isentropic modulus must be

used in equation (159), since in a sound wave the changes of

volume take place so rapidly that there is no perceptible loss of

heat from the compressed portions of the air.

264. Experimental determination of Me , Mn a, and k of a gas.

— From equation (155) Mt is shown to be equal to the pressure

of the gas, and therefore easily observed.

Equation (159) enables the calculation of Me when V and p
have been observed.

Equation (153) enables the calculation of k when Mt and

Me have been determined.

Equation (154) enables the calculation of a when k has been

determined.*

Values of <r and tc have been determined in this manner for

most gases. [See Ostwald, "Allgemeine Chemie," Bd. I.,

p. 248.] It is remarkable that er= o and k=
J,

for monatomic

* See Art. 281 for Clement and Desorme's method for the determination of k.

o
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gases, such as mercury vapor and argon. In such gases all the

energy seems to be translational.

265. Specific heats of gases. — The number of thermal units

required to raise the temperature of one gram of a gas one

degree is called the specific heat of the gas. See Art. 239.

If the volume is maintained constant during this rise in tem-

perature, since no external work is done by the gas, all of the

heat applied goes to increase the total kinetic energy of the gas.

If, however, the gas be allowed to expand, to such extent, for

example, as to maintain the pressure constant, then additional

heat will be required to make up for the work done by the gas

during expansion.

The specific heat of a gas, therefore, has two important

values.

(a) The specific heat, C„ at constant volume.

(b) The specific heat, Cp, at constant pressure.

The latter has the larger value.

266. Proposition. — The ratio of the tivo specific heats of a gas

is equal to the ratio of the two bulk moduli. That is,

Proof.— (a) Preliminary statement. Cp and Cv are propor-

tional to the respective amounts of heat required to produce an

arbitrary increment of temperature, AT, in an arbitrary amount,

say N, molecules of the gas under the conditions of constant

pressure and constant volume, respectively. Since T is propor-

tional to the translational energy \NmaP' of the gas, the incre-

ment A T corresponds to a definite increment Nmw • Aco of this

translational energy, or a definite increment of co.

(b) Heat required to raise temperature at constant volume.

In this case all the heat AH is used to increase the total kinetic

energy, so that

AH= ( 1 4- a) Nmco Aco. («)
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(c) Heat required to raise temperature at constant pressure.

The heat, AH, required in this case exceeds AH by the amount

/ • Av, which amount is used for external work.

But pv—\Nnml (from 150). Therefore since / is constant,

p • Av= \Nnm • Aw, so that

AH = (|+ er)Nmm • Ao>.
(fi)

Dividing (/3) by (a) we have —? =—- = k.

C„ AH

267. Experimental determination of Cp . — In the method

generally employed, the hot gas is drawn by means of an

aspirator (pressure of cooling gas practically constant) through

a coil of pipe in a water calorimeter. The mass of gas is deter-

mined from its density and the volume aspirated. The cooling

of the gas is determined by observing temperatures at entrance

to and exit from the coil, and the amount of heat in water units

is determined by the rise in temperature of the calorimeter in the

ordinary manner. This gives Cp in water units of heat per gram

of gas per degree.

In Art. 282 a method is described for determining Cp
in ergs

per gram per degree. The ratio of the values of Cp determined

in these two ways gives the number of ergs in one water unit of

heat. This method for determining the mechanical equivalent

of the water unit is due to Meyer.

The direct determination of Cv , by means of the calorimeter

is scarcely possible, since the containing vessel used to maintain

the volume of the gas constant must be heated and cooled

with the gas, and the amount of heat required in thus heating

and cooling the vessel is always many times as great as the heat

given off by the cooling gas. The latter quantity is therefore

largely masked by the experimental errors sure to occur.

Having determined Cp , however, and k being known, C„ may
be calculated from (160).
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268. Constancy of Clausius' ratio From (a) and (/3) of Art.

266 we see that Cv and Cp are proportional to (i+cr) and to

(f+ 0") respectively. Cv and Cv are shown by experiment to be

constant for a given gas, therefore the constancy of a is verified.

Clausius showed, by considering the average behavior of a large

number of erratically moving particles, that ^the ratio of their

translational to their rotational and vibrational energy must be

constant.

The experimental verification of this relation adds greatly to

the strength of the kinetic theory of gases.



CHAPTER XII.

THERMODYNAMICS; THERMAL PROPERTIES OF
HOMOGENEOUS SUBSTANCES.

269. Specification of physical state. — The physical state of

a given amount of a gas, or of any homogeneous substance, is

completely specified when its pressure and volume are given.

Throughout this chapter volume will be understood to mean the

volume of a definite amount of the substance (in general the

volume of a gram of the substance). [See Art. 219.]

270. Watt's diagram.— It is convenient to represent the

physical state of a gas (or of a homogeneous substance) by

a point P (Fig. 134), of which

the abscissa represents the vol-

ume, and the ordinate the pres-

sure of the gas. The work ptkv

done by the gas in expanding is

represented by the area pkv in the

figure.

PRESSURE

Fig. 134.

AV VOLUME

271. Process. — A substance

which passes slowly from one

physical state to another because of changing pressure or

changing volume, or both, is said to undergo a process.

The points in Watt's diagram which represent the successive

states passed through by a substance during a process, form a

continuous curve. See Arts. 275 and 276. Thus a substance

in passing from the state represented by the point P (Fig. 135)

to the state represented by the point P' must pass without dis-

continuity through all the states represented by points lying on

197
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some continuous line connecting P and P'. The external work

done in such a process is represented by the area PP'ab. This

area is swept by the ordinate Pa
as P moves along the curve to

P'. It is customary to consider

the work pAv as positive when
Av is negative, that is, when Av is

a decrement. Therefore the work
* represented by the area PP'ab is

positive when this area is swept

to the left by the moving ordinate,

and vice versa.
Fig. 135.

272. Cyclic process.—A process is said to be cyclic when the

substance comes back at the end of the process to its initial

state. Thus the closed curve (Fig. 136) represents a cyclic

process. The substance, starting from the state P, passes

through the states represented

by the successive points on the

line, and returns to the initial

volume and pressure. If the

process is performed in the

sense indicated by the arrow,

the shaded area will be swept

once to the right and once to

the left, while the enclosed area

is swept once only and to the

left. Therefore the enclosed area represents the work done

upon the substance during the process. If the process is per-

formed in the opposite sense, the enclosed area will represent

the external work done by the substance during the process.

273. States* of thermal equilibrium. — A gas, or any homo-

geneous substance, if left standing, soon reaches a state in which

* The word state implies standing or permanence, and there can be no such thing

as a state other than equilibrium. The word is used, however, in speaking of changing

states, that is, instantaneous aspects, of a system not in equilibrium.

Fig. 136.
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the molecular velocity is the same in all its parts.* Such a

state is called a state of thermal equilibrium of the substance.

If a portion of the walls of the containing vessel is moved or

heated, the molecules rebound from that portion with changed

velocity. If the motion is very slow or the heating very slight,

the state of the gas will be at each instant sensibly a state of

thermal equilibrium. If the motion is rapid or the heating con-

siderable, the distribution of molecular velocity will become

distinctly non-uniform and the state of the gas distinctly other

than a state of equilibrium.

274. Reversible processes. — If a material system be carried

slowly through a series of states of equilibrium by weak external

forces, it will be made to pass through this series of states in

a reverse order if the external forces be reversed. In a similar

manner, if a homogeneous substance be made to perform slowly

any process by the action of external influences, the state of the

substance will be at each instant a state of equilibrium and the

process will be performed in a reverse order if the external

influences be reversed. Such a process is called a reversible

process.

Reversible processes are brought about only by the action of

external influences on a substance under conditions such that

the substance is at each instant in a state of equilibrium.

The slow heating or cooling of a gas in a vessel is a reversible

process. The slow compression or expansion of a gas in a

cylinder under a piston is a reversible process (compare Art.

273).

275. Proposition.— The points in Watt's diagram which

represent the successive states of a substance as it is carried

through a reversible process form a continuous line. For the

volume and pressure, and of course also temperature, must vary

slowly in order that the substance may be at each instant in a

* These parts are large compared to distance between molecules.
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state of equilibrium and the process reversible (compare Arts.

273 and 274).

276. Sweeping processes.—A material system not in a state

of equilibrium undergoes a sweeping change independently of

the action of external force. After the system has settled to a

state of equilibrium it could be made to pass through the proc-

ess in a reverse direction only by bringing to bear upon it a

system of external forces which exactly duplicates, with change

of sign at each stage, the mutual forces which acted at the cor-

responding stage of the sweep.

A homogeneous substance not in a state of thermal equi-

librium undergoes a sweeping process as the substance settles

down to a state of thermal equilibrium. Such a process is

absolutely irreversible, for no system of external forces can be

devised duplicating the forces which act between the molecules

of the substance during such a sweep. Sweeping processes

are essentially independent of external influences. A gas con-

fined to half of a closed vessel by a diaphragm undergoes a

sweeping process when an aperture is opened in the dia-

phragm. A gas in a vessel which is quickly heated or cooled

or of which the walls are moved rapidly, undergoes a sweeping

process while the altered molecular velocity is being distributed

throughout the gas. Most processes in nature are of a sweep-

ing character and irreversible.

It is to be noticed that a gas, or any homogeneous substance,

not in a state of thermal equilibrium, has no definite pressure, so

that states of thermal equilibrium only, and reversible processes

only, can be represented in Watt's diagram. If a substance

passes from one state of thermal equilibrium to another by a

sweeping process, this leaves a gap in the process-curve in

Watt's diagram.

277. Isothermic and isentropic expansion.— Two reversible

processes, which will be of particular importance when we come
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to the discussion of the second law of thermodynamics, are (a)

expansion at constant temperature, that is isothermic expansion,

and {p) expansion without gain or loss of heat, that is isentropic

or adiabatic expansion. A line in Watt's diagram which shows

the relation between / and v of a substance during isothermic

expansion is called an isothermic line ; a line which shows the

relation between p and v of a substance during isentropic

expansion is called an isentropic or adiabatic line.

278. Isothermic lines of gases.— When T is constant, equa-

tion (148) gives

pii = constant, ( J 6i)

which is the equation to the isothermic lines of a gas, in Watt's

diagram. These lines are evidently equilateral hyperbolas. For

an example, see the continuous curves in Fig. 137.

Fig. 137.

279. Isentropic lines of gases.— The equation to these lines

is derived as follows : The external work — p • Av done by a

gas expanding without gain or loss of heat is equal to the decre-
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ment of the total kinetic energy, | ( I + cr) Nina?, of the gas.

That is,

—/ • At'= (1+0-) Nmco • A&>. (a)

The change in pressure is in part due to the increase in

volume and in part to the decrease of temperature, or of &>.

Differentiating / = i with respect to ft), and then with
v

respect to v, we have

A . 9 Nmco • Aw
t
Nmw2

• A?> , , x

4>-t i

—

?
—

.

(*)

Substituting the value of TVwft) • A&> from (a) and/= j—

in (b), writing k for -—— and reducing, we have

-^+/e— =0. (c)

p v
x '

Integrating, we have

log/+ *: log v= constant O62)

or pvK= constant, ( J 63)

which is the equation to the isentropic lines of a gas in Watt's

diagram as shown by the dotted lines in Fig. 137.

280. Rise in temperature of a gas during isentropic compres-

sion.— Substituting the value of p from pv=RT'(148) in (163),

we have

7V" 1 = constant. O64)

Substituting the value of v from pv=RT (148) in (163) we

have
1-*

Tp K = constant. ( l65)

If a gas at temperature T and volume v
1
be quickly com-

pressed to volume vv then, since quick compression is isen-
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tropic, the temperature T2 of the gas after compression will be

such that

T
xvrx=T

%v;-
1

(a)

from equation (164). Similarly

1 IC 1—K ( 1\

from equation (165), enables the calculation of the temperature

T
2 to which a gas is raised, when, starting from temperature T

x

and pressure pv it is quickly compressed until its pressure is p2
.

281. Method of Clement and Desormes for the experimental

determination of k.— A vessel filled with the gas at pressure p x

and temperature T
x

is opened to the air, allowing the pressure

to drop quickly to atmospheric pressure p2 , the temperature

falling at the same time to T
2

. Equation (165) gives

l-K 1-K

T\P\ « = TiPi K
- (a)

The vessel is then quickly closed and allowed to stand until

it has reached its former temperature Tv when the pressure is

/>3 , so that from Gay Lussac's law

/a A K }

Substituting the value of T2 from (b) in (a) and reducing, we
have

1-*

A\ - A (166)
a; a

from which pv p2 , and ps having been observed, tc may be calcu-

lated.

282. Calculation of Cv and Cp from the data of the method of

Clement and Desormes.— The external work, ipdv, done by

that part of the gas which after venting fills the vessel, during
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its isentropic expansion from p1
to p2 , comes from the decrease

in the energy of that part of the gas, and this decrease in energy-

it is which cools the gas from 7\ to T
2

. Therefore, (pdv is

equal to the heat given off by the part of the gas under con-

sideration in cooling at constant volume from T
x
to T

2
. Let p2

be the density of the gas at pressure p2
and temperature T

2 ,

and v2
the volume of the vessel. Then p2v2

is the mass of the

part of the gas under consideration, and p^o
t

{T
x
—T

2)Cv is the

heat this amount of the gas would give off in cooling at con-

stant volume from T
t
to T

2
. Therefore

f
Upon reduction this gives

:

pdv= p2v2 ( 7\- T2)CV . (ay

(167)

The temperature Tv not necessarily observed for the deter-

mination of k, must be observed for the determination of Cv .

The temperature T
2 cannot be observed directly but is to be

calculated from equation (b) of Art. 281. Equation (167) then

enables the calculation of Cv . Having thus determined Cv and

having computed k from (166), equation (160) enables the

calculation of Cp .

283. Second law of thermodynamics.— Heat cannot pass of

itself from a cold to a hot body, nor can it be transferred by any

meansfrom a cold to a hot body without compensation.

The transference of heat from a hot to a cold body is a sweep-

ing process and is irreversible. This law may be stated by

declaring the absolute irreversibility of any sweeping process.

Thus, a gas cannot pass of itself from a region of low pressure

* The integral I "'pdv is reduced as follows : The expansion being isentropic,

we have pvK — p^vf- from equation (163). Substitute the value of dv from this

expression, remembering that pi and v2 are constants in the integral, and the inte-

gration becomes possible.
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to a region of high pressure, nor can it be made to do so by any

means without compensation.

The first part of this law, in either statement, is a matter of

common experience. As to the second part, it is possible to

transfer heat from a cold to a hot body, and to transfer a gas

from a region of low pressure to a region of high pressure, but

such transference depends in every case upon the doing of a

definite amount of work or upon some outstanding change of

some kind in some other substance or system. The doing of

this work or this outstanding change is the compensation con-

templated in the law. The strict equivalence of these two state-

ments of the second law will appear when the principle of the

equivalence of irreversible processes is fairly stated.

Let a portion of any homogeneous

P

284. Carnot's cycle.—

substance under a piston

in a cylinder start from

the state P (Fig. 1 38), the

temperature being Tv and
pass through the follow-

ing four processes, coming-

back to the initial volume

and pressure as shown in

the diagram. The dia-

gram is constructed for a

perfect gas.

Let the gas (a) expand

isothermally at tempera-

ture Tv Fig- 138.

{b) Expand isentropically from temperature T
x
to Tr

(c) Be compressed isothermally at temperature T
2

.

(d) Be compressed isentropically from temperature T
2 to Tv

During the process {a) heat must be furnished to the substance

to prevent its temperature falling, and during the process (c) heat

must be extracted from the substance to prevent its temperature
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rising. During the processes (b) and (d) the substance must be

in some manner isolated so as to be in contact with no substance

with which it can exchange heat.

285. Carnot's apparatus. — The following ideal apparatus,

hereafter called Carnot's apparatus, for brevity, serves to fix in

the reader's mind the conditions of the performance of Carnot's

cycle.

CC(¥ig. 1 39)is a cylinder with pistonPP, made of non-conduct-

ing material, the bottom of the cylinder only being a conductor.

HEATER

T,

NON-CONDUCTOR

Fig. 139.

COOLER

To

During the process (a) the cylinder is placed upon the heater at

temperature Tv As the substance slowly expands, the piston

being slowly raised, heat from the heater passes through the

conducting bottom and maintains the temperature of the sub-

stance constant. During the process ic) the cylinder is placed

upon the cooler, which keeps the temperature constantly at T2

during the compression. During the processes (b) and (d) the

cylinder is placed upon the non-conducting table N and the

substance thus thermally isolated.

286. Work gained and heat lost in Carnot's cycle. — When
the substance has passed through Carnot's cycle, and has

reached its initial state, its energy is as at first. Therefore,

from the first law of thermodynamics,

W= H
x
- H

2 ('68)
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in which W is the external work done by the substance during

the cycle, H
x

is the heat absorbed from the heater, and H
2

is

the heat given up to the cooler. The work W is represented

by the enclosed area in Fig. 138 (see Art. 272).

287. Work spent and heat gained in Carnot's cycle reversed.

— Carnot's cycle being carried out in a reversed direction, as is

possible, since each process is reversible, the work W will be

done upon the substance, the heat H
x

will be given to the

heater, and the heat H2
will be absorbed from the cooler.

288. Heat engine ; refrigerating machine. — Carnot's appa-

ratus is a heat engine, that is, a machine for transforming heat

into work. The heat H
x

is taken from the heater ; a portion

of it is changed to work, and the remainder H
2

is given up to

the cooler.

Carnot's apparatus driven backwards is a refrigerating

machine, that is, a machine which extracts the heat H
2 from

the cooler, and gives up this heat together with the heat equiv-

alent of the work done on the substance, to the heater.

289. Efficiency of heat engines. — The ratio of the total

heat Hv extracted from the heater to the work W done by an

engine, is called the efficiency r\ of the engine. That is,

V^jf ( l69)

The ratio of the heat H
x
taken from the heater to the heat

H
2
given to the cooler is also an important ratio. From equa-

tions (168) and (169) we have

If?-.
1 "* ('70)

290. Proposition. — (a) No engine can be more efficient than

Carnot's apparatus, (b) All reversible engines have the same
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efficiency as Carnot's apparatus, (c) Irreversible engines are

less efficient than Carnot's apparatus.

Proof. — (a) Suppose there is an engine more efficient than

Carnot's apparatus. (That is, doing the same work, but ex-

tracting less heat from the heater, and giving up less heat to the

cooler than Carnot's apparatus.) Doing the same work, this

engine will be able to drive Carnot's apparatus backwards.

Carnot's apparatus will then extract more heat from the cooler

than is given to it by the other engine, and will give off more

heat to the heater than is taken from it by the other engine.

Thus the arrangement will continue to transfer, on the whole,

heat from the cooler to the heater, without compensation of

any kind, which is contrary * to the second law. Therefore

no engine can be more efficient than Carnot's apparatus.

(b) Suppose there is a reversible engine which is less efficient

than Carnot's apparatus. (That is, doing the same work, but

extracting more heat from the heater and giving more heat to

the cooler.) This engine, driven backwards by Carnot's appa-

ratus, will constitute an arrangement which will continue to

transfer heat from cooler to heater without compensation.

This is contrary to the second law ; therefore no reversible

engine can be less efficient than Carnot's apparatus.

(c) If any irreversible engine were of the same efficiency as

Carnot's apparatus, this engine could drive Carnot's apparatus

backwards, or be driven backwards by Carnot's apparatus,

without transferring heat from heater to cooler, or vice versa.

The arrangement thus being reversible, the engine itself must

be so. Therefore no irreversible engine can be as efficient as

Carnot's apparatus.

A reversible engine is called a perfect engine. All perfect

* The second part of the second law of thermodynamics, being largely outside of

the reader's experience, will seem to him to afford an unsatisfactory basis of proof.

In fact, the experimental verification of this second law comes largely from the experi-

mental verification of the deductions made from it, just as in case of Newton's laws

of motion.
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engines are equally efficient when working between the same

heater and cooler.

291. Rigorous definition of the ratio of two temperatures

(Thomson).— The provisional definition of the ratio of two

temperatures, given in Art. 225, leads to inconsistent results,

unless a certain gas at a certain density is always used as the

thermometric substance. (Because Gay Lussac's and Boyle's

laws are only approximately true.) Lord Kelvin (Sir W.

Thomson) has pointed out the following definition of temper-

ature ratios, which is entirely independent of the thermal prop-

erties of any particular substance. All perfect engines have

the same efficiency when working between the same tempera-

tures. Therefore the efficiency of a perfect engine depends

only upon the temperatures T
x
and T

2
of the heater and

cooler, or, in other words, the ratio -=5* of the heat taken from

the heater to the heat given to the cooler, by a perfect engine,

depends only upon the temperatures T
x
and T2 . Therefore the

ratio of the two temperatures T
x
and T

2
may be defined as the

ratio of the heats H
x
and H2 . That is,

5-& 071)T
2
H

2

and the ratio of two temperatures is equal to the ratio of the

heats extracted from a heater and given to a cooler at the respec-

tive temperaticres, by a perfect thermodynamic engine working

between said heater and cooler.

292. Transformation of equation (171).— It is convenient to

consider heat as positive when absorbed by a substance which

is undergoing a process which is the object of consideration,

and vice versa. Therefore H
1
in equation (171) is positive, and

T T-fH
2

is negative, and this equation may be written —1 = — —1, or

more conveniently

:

2 2

^+^=0. (172)
i 2
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293. Proposition. — The sum of the quotients, -— , of the

heat absorbed (or given off) by a substance during each step of

a cyclic process, divided by the absolute temperature at the

step, is zero
; , provided that no part of the cycle is of a sweeping

character.

For a cyclic process, therefore,

2^=o.
( I73 )

Proof.— Let the closed line CD (Fig. 140) represent a cyclic

process. Draw two isentropic

lines e and f very close to-

gether. The portions of CD
which fall between e and/may
be considered to be portions of

isothermals * a and b, corre-

Tx sponding to temperatures T
x

and T
2
respectively.

The two isentropic lines e and

/, together with the interven-

ing portions of the curve CD,
Flg

-
14 °- thus form a Carnot's cycle.

Let AH
X
and A//

2 be the heats absorbed at temperatures T
x

and T
2 respectively. Then, from equation (172),

The given cycle CD may be broken up in this manner into a

large number of Carnot's cycles, so that for each portion of heat

A//j absorbed by the substance during the cycle, there is an-

other portion AH
2 , which together satisfy equation ( 1 72). There-

fore equation (173) is true.

* These short portions of C and D have not indeed the directions of the isother-

mals a and b, but anything which depends upon an infinitesimal portion of a line is

independent of the direction of the line. Therefore the closed line CD may be con-

sidered to be a very fine zigzag, composed of alternate portions of isothermals and

isentropic lines.
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294. Entropy. -

stance, such that

Let c/> be a quantity, associated with a sub-

A , AH
(174)

in which A<£ is a change in cf>, and AH is an amount of heat

absorbed by the substance and T is its absolute temperature.

Let any convenient state of the substance be chosen for which

the value zero is assigned to the quantity
<f>.

This state is called

the zero state of the substance. Compare Art. 92, on potential

energy. The value of
<f>

for any other state is then

AH
T°

,=?. (175)

The summation is extended throughout any reversible process,

bringing the substance from the zero state to the given state.

The quantity <j> is called the entropy of the substance. The

entropy of a substance in a given state is proportional to the

mass of the substance, for the heats, AH, absorbed in each step

of the process which brings the substance from the zero state

to the given state, are proportional to the mass of the substance,

so that £-^r is also proportional to the mass.

295. Proposition.— The entropy, c/>, of a substance has a defi-

nite valuefor each state of the substance.

Proof— Let O (Fig. 141) be

the zero state, and G the given

state of the substance. Let P
and P' be any two reversible

processes leading from O to G.

Let
(f>

be equal to the sum

£ for the process P
9
and

let </> be equal to the sum Z ~^r

for the process Pf
. Then — <j>'

is the value of %—- for the
T Fig. ui.

,0
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A J~T

process P' reversed, and 4> — (f>'
is the value of X for the

cycle OPGP 1

. But from Art. 293, this must be equal to zero

;

therefore (/>= </>'. q.e.d.
A TT

Remark. — According to the equation A<j>=-—- (174), the

entropy,
(f>,

of a substance cannot change, unless the substance

gives up heat to, or receives heat from, surrounding bodies.

This equation (174), however, takes no account of siveeping pro-

cesses. Indeed, for such processes we have the proposition :

296. Proposition. — The entropy of a substance is always in-

creased by a sweeping process.

Proof. — Let the substance be in a state of thermal equilib-

rium designated by (I), and let its entropy be
<f> x

before the

sweep. After the sweep let it be in a state of thermal equilib-

rium designated by (II), and let its entropy be <£2
. Then

fa — fa^-jr' (a)

where the summation is extended throughout a reversible

process, carrying the substance from II back to I. The sweep

and this reversible process together form a cycle.

A sweeping process is essentially independent of external

action on a substance * (Art. 276). We may therefore assume

that the substance during the sweep neither absorbs nor loses

heat, nor does external work, nor has work done upon it. The

reversible process, on the other hand, must be accompanied by

external action (see Art. 274). Let W be the work done upon

the substance, and H the heat absorbed by the substance during

this reversible process. Then, from the first law of thermo-

dynamics,

W=-H. (b)

* All the ideas in this chapter are applicable to a system of homogeneous substances.

The system in the case before us is to include all substances which participate in the

given sweep.
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If W is negative and H positive, then each time the cycle is

performed, the heat H is changed into work which is available

for outside purposes. This transformation of heat directly into

work without compensation is impossible, therefore * W must be

positive and H negative. That is, the work W is done on the

system, and the* heat is given off. H being negative, the sum
A/-/2—- in(#)is necessarily negative, so that

<f>2
is greater than </>v

297. Equivalent sweeps. — Two sweeps for which the incre-

ment of entropy is the same, are said to be equivalent. Consider

two systems A and B. Let a3
and a

2 be two states of equilibrium

of the system A, such that a
2
may be reached from a

1
by a

sweep for which the increment of entropy is (j>. For example,

a
l
may refer to two isolated substances standing at different

temperatures, and a2 to the final state reached when the sub-

stances are brought into contact. Let b
x
and b

2 be two states

of equilibrium of the system B, such that b
2
may be reached

from b
x
by a sweep for which the increment of entropy is also

<f>.
For example, b

x
may refer to a gas confined in a chamber

of a closed vessel b2 to the gas after it escapes into the whole

vessel. Consider a reversible process A, leading from a
x

to a
2

(or a
2 to a^)\ and a reversible process B, leading from b

2 to bt
(or b

x
to b

2 ). It can be shown by a slight modification of the

method of Art. 296, that the external influence necessary to the

process A is equal and opposite to the external influence neces-

sary to the process B. Therefore the state of affairs, after a

szveep from a
x
to a

2 , may be changed by a reversible process to

the state of affairs which would have existed had the sweep from

b
x
to b2 taken place instead of the sweep from a

x
to a2

. Two
such sweeps are thus equivalent.

* The direct transformation of heat into work is shown to be contrary to the

second law as follows : Let the heat to be transformed into work be drawn from
the heater or the cooler of Carnot's apparatus, and let the work be used to drive

Carnot's apparatus backwards, then heat will be transferred from cooler to heater

without outstanding compensation.
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298. Further statements concerning entropy.— (a) If a system

suffer an increase of entropy A$ because of any internal change,

that change must be of a sweeping character, bringing the sys-

tem from an unstable condition to a stable condition. Such a

cJiange when possible is inevitable.

(b) Thermal and chemical equilibrium.— The entropy of a

system in equilibrium is a maximum ; for if any small internal

change be possible which further increases <£, this change must

take place, and the system will not be in a state of equilibrium.*

299. Entropy of a gas.— (a) Change of entropy with pressure

at constant volume. — From equation (148), viz., pv= RT, we

have v • dp=R • dT. Multiplying both members by Cv, then

dividing by pv=RT member by member, remembering that

CvdT=dH, and that -—= </<£, we have

dcf>=Cv ^. (a)

(b) Change of entropy with volume at constant pressure. —
From pv=RT we hzvepdv=RdT. Multiplying both members

by Cp, and reducing as in (a), we have

v

The total change in (j>, due to changes in both volume and

pressure, is

v p

Integrating from p= o, v= o, <j>= o
f
Cv and Cp being constant,

we have

<f>
= Cp \ogv+ Cv \ogp. (176)

* One of the most remarkable developments of modern physics is the application

of thermodynamics to the study of thermal and chemical equilibrium. The student

will find the writings of Gibbs, of Planck, and of Duhem of extreme interest in this

connection.
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Dividing this equation by Cv, and comparing the result with

equation (162), we see that the constant in that equation is -5L

300. The fundamental equation of thermodynamics. — The

total internal energy E of a substance can change only by the

absorption of heat by or the emission of heat from the sub-

stance, or by the doing of work upon or by the substance.

Let dE be a change in the internal energy of a substance ; let

dH= Td(j>, see equation (174), be the heat absorbed by the sub-

stance, and —pdv, see equation (152), be the work done upon

the substance. Then

dE=T-d$-pdv (177)

is an equation which formulates both laws of thermodynamics,

for it recognizes the equivalence of work and heat on the one

hand, and assumes the existence of entropy on the other. All

the thermal properties of bodies, in so far as they are deducible

from the two laws of thermodynamics and are not matters of

separate observation, are deducible* from this equation. This

equation of course failsf in case of sweeping processes.

301. The steam engine.^ — The conditions to be satisfied in

order that the efficiency of the steam engine may be a maximum,

are that the range of temperature of the steam as it passes

through the engine be as great as possible (Arts. 289, 290, 291),

and that all the processes undergone by the steam be reversible

(see 290). In order that the range of temperature of the steam

may be great it is to be at high pressure, and consequently hot,

when it enters the cylinder and it is to be expanded, as it does

work, until its pressure (and temperature) has been lowered as

* See Ency. Britannica (9th edition), article on Thermodynamics, by P. G. Tait.

t This failure is not essential, for the only logical thing in connection with a given

sweep in any case is the mere recounting of its progress, and even this is impracti-

cable.

X The student is referred to special treatises for description of the construction and

operation of the steam engine.
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much as possible. The economy of the furnace sets a more or

less definite limit to the temperature of the steam upon entrance

to the cylinder, for if the steam is to be very hot the flue gases

of the furnace will be even hotter and will carry off great

amounts of heat. The cost of large cylinders and the great

radiation therefrom sets a practical limit to the amount of

expansion.

The irreversible processes undergone by the steam in an

engine are as follows :

{a) Wire drawing.— If the pipes and passages traversed by

the steam from the boiler to the engine are small, the pressure

in the cylinder with open ports will be lower than boiler pressure,

so that the entering steam passes from a region of high pressure

into a region of lower pressure. Also, as the cut-off valve

closes, steam will rush into the cylinder through a narrowing

aperture. To provide against loss of efficiency from this cause

the pipes must be of ample size and the cut-off must be very

quick.

{b) Radiation. — The cooling of pipes and cylinder by radia-

tion— i.e. giving up heat to surrounding cooler bodies— is irre-

versible, and is to be avoided as much as possible by the use of

an insulating covering.

(c) Cylinder condensation.— As one charge of steam in the

cylinder expands it cools, and cools the cylinder and piston, so

that when steam is next admitted it heats cylinder and piston

up again and is itself cooled. This cannot be prevented, but

its evil effects can be in large part avoided by having a series

of cylinders (a compound engine), so that the range of pressure

and the range of temperature in each may not be great; and by

providing separate passages for the ingress and egress of steam.

(d) Effect of high piston velocity.— If piston speed is too

great, the pressure of the expanding steam becomes ineffective

because the portions of the steam near the moving piston are

expanded and cooled before the more remote parts of the steam

are affected (compare Art. 276).
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The actual effect of these sweeping actions upon the efficiency

of a steam engine is a thing to be determined by experiment.

In fact the study of the steam engine is a thing far removed

from theoretical thermodynamics, and the only assistance given

to the study of the steam engine by thermodynamics is to

enable a keener insight into the properties of steam, and

to show in a general way the conditions necessary to high

efficiency.

302. The transfer of heat.— The transfer of heat contem-

plated in the definition of higher and lower temperature, and

in the statement of the second law of thermodynamics, takes

place in three ways, more or less distinct.

In case one body appears to impart heat directly to another

at a distance, the transfer is said to be by Radiation. This

phenomenon will be discussed under Light.

In case the transfer of heat is by the distinct movement

of a hot substance, as of a hot fluid, the transfer is said to be by

convection.

In case the transfer is between the contiguous parts of a body

which is not at the same temperature throughout, the transfer is

said to be by conduction. Conduction is, no doubt, due to an

increase in the velocities of the molecules in a cooler part of the

body, as they rebound after collision with the more rapidly

moving molecules in a contiguous warmer part of the body.

The following articles refer chiefly to conduction

:

Temperature gradient. — Let T be the temperature of a body

at a given point, and T-\-AT its temperature at an adjacent

point distant Ax from the first ; then — or —— is called the
Ax ax

temperature gradient at the given point in the direction of Ax.

If the temperature gradient is thus found in three different

directions at a point, the vector sum of the three will be the

resultant temperature gradient at the point.

A temperature gradient is always accompanied by a flow of

heat in the direction of the gradient from hot to cold.
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Fourier's law; thermal conductivity.— Let H be the num-

ber of thermal units flowing per second across the area a at

right angles to the temperature gradient at a point. Then

(Fourier's law) H is for a given substance proportional to the

temperature gradient — and to a
y
that is,

ax

H=Ka—

,

dx
(178)

in which K is the proportionality constant, which is called the

thermal conductivity of the given substance.

TABLE XVI.

Thermal Conductivity (K) ; Calories (cm.
-

) • sec.
-

• per ° C.

Substances.

Aluminium

Antimony

Bismuth

Brass

Carbon .

Copper .

Iron . .

Lead . .

Magnesium

Silver

Tin . .

Zinc .

K.

0.34 at o°

0.04 at o°

0.0 1 at o°

0.15 to 0.20 at o°

0.0004

0.90 to 1. 10 at o°

0.15 to 0.20 at o°

0.07 at 7

0.37 at 50

1.09 at o°

0.14 at o°

0.30 at o 1-

Substances. K.

Cork

Glass

Ice

Lava

Marble

Paraffine

Vulcanite (hard rubber)

Alcohol (C2H60) . .

Ether (C4H10O) . . .

Mercury

Olive oil

Water

0.0007

0.0013 to 001 % at I5 C

0.0056

0.00008 at o°

0.0017 at o°

0.00014 at o°

0.00009 at o°

0.0004 at 5

0.0004 at 5

0.0148 at o°

0.0004 at 5

0.0012 at o°

303. Example of heat conduction— across a wall.

— Consider a wall of thickness d (Fig. 142), of

which the thermal conductivity is K; the faces of

the wall of area a being maintained at tempera-

tures T and T' respectively. The temperature
7— T1

gradient is —-—, so that from equation (178) we

have H=Ka in which H is the number of

thermal units per second flowing across the wall.
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For discussion of experimental methods for determining ther-

mal conductivity, see Preston, "Theory of Heat," pp. 505-572.

304. Emission of heat.— The transfer of heat across the

surface which separates two substances is akin to conduction.

The transfer of heat from hot bodies to air and through the air

to surrounding bodies is called emission of heat.

Newton's law of emissivity.— The rate H at which a hot

body emits heat is very nearly proportional to the excess T of

its temperature above that of its surroundings, and roughly

proportional to the extent a of its surface. That is,

H=eaT, (179)

in which e is the proportionality factor, which is called the

emissivity of the surface of the body.

TEMP.

305. Cooling of a body by emission. — Consider a body of

mass m and of specific heat h. Let a be the superficial area

of the body, e its emissivity, and T
x

its temperature excess

above its surroundings at an instant (t=o), from which time is

reckoned, and T its temperature excess after a time / has

elapsed. The rate of emission of heat is H=eaT from equa-

tion (179), so that the heat emitted during a short interval At
is ea T • At. This heat is extracted from the body as it cools,
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causing a fall A T in its temperature, such that m/iAT=eaTAt]

or since A?" is negative, we have

dT_ ea ^
dt mJi

If we integrate, remembering that T= T
x
when /=o, we have

— ea
t

This is represented graphically in Fig. 143.

The above equation enables the calculation of e when m, h, a,

and T
x
are known, and when the temperature T after a known

lapse of time t has been observed.

END OF VOLUME
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Acceleration, angular, 56.

(angular), relation of, to torque, 67.

of gravity, methods of determination,

79-

of a particle, 26.

Adiabatic (or isentropic) lines of gases,

201.

^lotropy and isotropy, 86.

Air thermometer, 157.

Ammonia vapor, tension of (table), 180.

Angle, 4.

Angles of contact, 126.

of reference in crystals, 144.

Angular acceleration, 56.

relation to torque, 67.

momentum, 67.

velocity, 55.

Archimedes' principle, 120.

Area, 6.

Atwood's machine, 37.

Avogadro's principle, 188.

Axis, instantaneous, 57.

Balance, 8.

Coulomb, 72.

torsion, 72.

Balance wheel of clocks, 14.

Ballistic curve, 42.

Barometer, 116.

Baroscope, 121.

Beaume's scale, 13.

Bent beam, discussion of, 98.

Berzelius' law, 185.

Boiling point, defined, 178.

Boiling points (table), 181.

Borda, construction of kilogram, 7.

Borda, construction of meter, 1.

determination of the density of water,

11.

method of determining gravity, 79.

Boyle's law, 1
1
3.

limitations of, 114.

deviations from, 188.

Boys, experiment on the attraction of

small masses, 74.

Breaking stress, 103.

Bulk modulus, 88.

Bunsen's ice calorimeter, 170.

Buoyancy, center of, 121.

C. G. S. system of units, 18.

Cailletet's manometer, 119.

Caliper, 3.

Calorie defined, 168.

Calorimeter (ice), 170.

(water), 169.

Calorimetry, heat of combustion, 174.

method of mixtures, 174.

Capillary elevation and depression, 128.

Capillarity, equation of, 129.

Carnot's apparatus, 206.

Carnot's cycle, 205.

cycle, gain of work and loss of heat

in, 206.

Cathetometer, 2.

Cavendish's experiments, 73.

Celsius, scale of temperatures, 158.

Center of inertia (or gravity), 32.

of mass, motion of, 34.

of oscillation, 75.

identity with center of percussion, 77.

of percussion, 75.
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Changes of state, 176.

Charles' law, 154.

Chronograph, 15.

Clausius' ratio, 190.

constancy of, 196.

Clement and Desormes' method, 203.

Clock, 14.

Closed system, 32.

Coefficient of diffusion, 149.

of friction, 107.

of viscosity, 132.

Coefficients of expansion, 163.

Coincidences, method of, 79.

Colloids, 144.

Combining ratio, 141.

Combustion, heat of, 174.

Compound, chemical defined, 141.

Conduction of heat, 217.

across a wall, 218.

Conductivity, law of, 218.

Conductivities, table of, 218.

Configuration of a system, 32.

Conservation of energy, 61.

of matter, 141.

of momentum, ^.
Constant angles, law of, 144.

proportions, law of, 141.

Contact, angles of, 126.

Convection, 217.

Cooling of a body by emission, 219.

Couple, 53.

Coulomb, balance, 72.

Coulomb's law of friction, 108.

Critical temperatures (table), 183.

Crystals, angles of reference, 144.

intercepts of face, 144.

symmetry of, 146.

Crystallization defined, 143.

cubic or isometric system of, 146.

diametric or tetragonal system of, 146.

hexagonal system of, 147.

inclined systems of, 147.

molecular theory of, 145.

monoclinic system of, 147.

orthorhombic or trimetric system of,

147.

triclinic system of, 147.

Crystalloids and' colloids, 144.

Cubic system of crystallization, 146.

Cycle (Carnot's), 205.

Cyclic process, 198.

Cylinder condensation in steam engines,

216.

Dalton's law, i 88.

Dewpoint, 184.

Density, definition of, 10.

measurement of, 1 1

.

Density of mercury, table of, 165.

of water, table of, 166.

Desorme's (and Clement's) method, 204.

Diameters, law of, 129.

Diffusion, coefficient of, 149.

of liquids, 149.

Dimensions of units, 18.

Dimetric or tetragonal system of crystal-

lization, 146.

Displacements, addition of, 26.

composition of angular and linear,

57-

Distributed quantity, 23.

Dividing engine, 3.

Ducomet's manometer, 119.

Dynamics, defined, 25.

Dynamometer, described, 31.

Dyne, defined, 28.

Earth, mass of the, 43.

Ebullition, 178.

Efflux, 136.

of a gas (Thomson and Joule's experi-

ment), 189.

Elasticity, influence of time upon, 103.

influence of temperature upon, 104.

limit of, 103.

Element, chemical defined, 141.

Elementary and compound substances,

141.

Emission, cooling by, 219.

of heat, 219.

Emissivity, law of (Newton's), 219.

Endothermic (and exothermic) reac-

tions, 174.
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Energy, conservation of, 61.

potential and kinetic of a closed sys-

tem, 61.

units of, 58.

imparted to a gas, 191.

of a liquid, 135.

of molecular motion, 152.

of a system of particles, 60.

(total), of a closed system, 62.

Engine, heat (efficiency of), 207.

a perfect, 208.

reversible and irreversible, 208.

steam, 215.

Entropy, 211.

change of, with pressure and volume,

214.

increased by sweeping processes, 212.

Erg, definition of the, 58.

Equivalent (mechanical), of heat units,

168.

Escapement of clocks, 15.

Evaporation, 184.

Exothermic reactions, 174.

Expansion of coefficients, cubic and

linear, 163.

by heat, 163.

of liquids by Regnault's method,

164.

of water, 165.

of solids, method of determination,

167.

(isothermic and isentropic) of gases,

200.

Eye and ear method, 15.

Fahrenheit, scale of temperatures, 159.

Falling bodies, law of, 35.

Fluid friction, i32.

Fluids, defined, 143.

viscous, flow of, 132.

Floating bodies, 122.

Foot-pound, the, 58.

Force, effects of a, 51.

gravitational units of, 31.

measurement of, 31.

moment of, 52.

unit and dimensions of, 28.

Forces, resultant of, 55.

Fourier's law of thermal conductivity,

218.

Friction, 107.

angle of, 107.

Coulomb's law of, 108.

determination of the coefficient, 108.

of fluids, 132.

Fusion, heat of (table), 181.

Galileo, experiments at Tower of Pisa,

36.

law of isochronism, 78.

Galileo's plane for falling bodies, 36.

Gas, a perfect, 190.

energy imparted to a, 191.

motion of the molecules, 190.

physical state of, specified, 197.

the two bulk moduli of a, 191.

Gases, defined, 143.

deviation of, from Boyle's law, 188.

isothermic and isentropic expansion,

200.

isothermic and isentropic lines, 20 1.

kinetic theory of, 186.

molecular volume of, 189.

pressures of a mixture, 186.

specific heats of, 194.

velocity of molecules, 188.

Gauging water, 139.

Gay Lussac's law, 1 54.

restated, 185.

Graduate, description of, 12.

Graham's law of diffusion, 149.

Gravitation constant, the, 43.

universal, 43.

Gravity, center of, 32.

determination by Borda's method, 79.

determination by Kater's method, 80.

formula for latitude and altitude, 81.

numerical values of, 82.

Gyration, radius of, 65.

Gyroscope, 68.

Harmonic motion, 46.

Harmonic motions, the superposition and

resolution of, 50.
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Harmonic rotary motion, 67.

variable, 49.

Heat, defined, 153.

conduction across a wall, 218.

effects of, 153.

measurement of, 168.

transfer of, 217.

emission, 219.

engines, efficiency of, 207.

maximum efficiency of, 208.

of fusion (table), 181.

of combustion, 174.

of vaporization (table), 182.

units, 168.

required to raise temperature of a

gas at constant volume and at

constant pressure, 195.

Hexagonal system of crystallization, 147.

Hodograph of an orbit, 27.

of a uniformly accelerated particle, 39.

Hooke's law, 87.

Horse power, 59.

Humidity (relative and absolute), 184.

Hydrometer, construction of, 12.

Fahrenheit's, 13.

Nicholson's, 13.

scale for, 13.

Hydrometers of constant immersion,

13-

Hydrostatic pressure, 87.

Hygrometry, 184.

Ice calorimeter, 170.

Inertia, moment of, 65.

moments of, about parallel axes, 66.

Inclined systems of crystals, 147.

Intercepts of a face in crystals, 144.

Irreversible engines, 208.

Isentropic expansion, 200.

lines of gases, 201.

modulus of a gas, 191.

Isochronism, law of, 78.

Isometric system of crystallization, 146.

Isothermic expansion, 200.

lines of gases, 201.

modulus of a gas, 191.

Isotropy and aelotropy, 86.

Joule, defined, 58.

Joule and Thomson's experiment on ef-

flux of a gas, 189.

Jurin's law, 129.

Kater, method of determining gravity,

80.

Kilogram, definition of, 7.

Kilogram-meter, the, 58.

Kinematics, definition of, 25.

of a rigid body, 68.

Kinetics, defined, 25.

Kinetic theory of gases, 186.

1 energy of a gas, 186.

and potential energy of a system of

particles, 60.

Law, Dalton's, 188.

Graham's, 149.

Hooke's, 87.

Jurin's, 129.

Malus', 145.

Newton's, 27.

Rome de PIsle's, 144.

Stokes', 132.

the first, of thermodynamics, 153.

the second, of thermodynamics, 204.

of Boyle and Mariotte, 113.

of constant proportions, 141.

of Charles and Gay Lussac, 154.

of diameters, 129.

of Gay Lussac (restated), 185.

of isochronism, 78.

of multiple proportions, 142.

of multiple volumes, 185.

of the pendulum experimentally veri-

fied, 78.

of rational indices, 145.

of thermal conductivity, 218.

Laws of motion, illustrated, 28.

Length, definition of, I.

measurement of, 1.

Liquids and gases defined, 143.

Liquids, critical temperatures of, 183.

diminution of pressure in a throat, 137.

efflux of, 136.

energy of, 135.
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Liquids, expansion of, by Regnault's

method, 164.

increase of pressure in passing across

the surface of, 124.

table of boiling points, 181.

Lubrication, 108.

McLeod gauge, 119.

Maius' law, 145.

Manometers (open tube), 117.

(closed tube), 118.

for high pressures, 119.

for very feeble pressures, 1 19.

Mariotte's law, 113.

Mass, center of, 32.

motion of center of, 34.

measurement of, 8.

unit of, 7.

vector of a particle, 32.

of the earth, 43.

of earth, Cavendish's experiment, 73.

Matter, conservation of, 141.

Mechanical equivalent of heat units, 168.

Melting points (tables), 177.

Mercury, table of densities, 165.

Metacenter, the, 123.

Meter, defined, 1.

the Venturi, 139.

Meters, displacement, 139.

Micrometer screw, 3.

Mixtures, defined, 141.

method of, 174.

Moduli of a gas, 191.

Modulus, bulk, 8$.

elastic, 87.

slide, 91.

stretch (or Young's), 92.

table of values of the stretch modulus,

98.

Molecular motion defined, 153.

action, sphere of, 124.

theory, 142.

of crystallization, 145.

volume of a gas, 199.

Molecules, velocity of, 188.

Moment of a force, 52.

of inertia, 65.

Moment of torsion (or constant of), 102.

Moments of inertia, formulae for, 66.

about parallel axes, 66.

Momentum, 33.

angular, 67.

Monoclinic system of crystallization, 147.

Motion, molecular, defined, 153.

simple harmonic, 46.

uniformly accelerated, 35.

uniform in a circle, 45.

the superposition and resolution of

simple harmonic, 50.

of gas molecules, 190.

of a rigid body in a plane, 56.

Multiple proportions, law of, 142.

volumes, law of, 185.

Newton's laws of motion, 27.

equation for the velocity of sound,

193-

law of emissivity, 219.

Nichols, Ernest; experiment with the

surface film of water, 127.

Orbit, hodograph to an, 27.

of a particle, 26.

Orthogonal systems of crystallization,

146.

Orthorhombic or trimetric system of crys-

tallization, 147.

Oscillation, center of, 75.

Osmosis, 149.

Particle, acceleration of, 26.

orbit of, 26.

position and displacement of, 25.

velocity of, 26.

Pascal's principle, 87.

vases, in.

Percussion, center of, 75.

Pendulum, equivalent length of, 75.

experimental verification of the law

of, 78.

in clocks, 14.

forms for measuring gravity, 81.

the gravity, 74.

the torsion, 70.
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Pendulum, the reversion, 75.

Percussion, center of (identity of the cen-

ter of with center of oscillation),

77-

Perfect gas, 190.

Periodic motion, 14.

Physical quantity, 17.

Piston velocity, effect upon efficiency of

steam engines, 216.

Planimeter, theory of, 6.

Poggendorff's method for measuring an-

gles, 5.

Poisson's ratio, 93.

and the bulk, slide,' and stretch

moduli, 95.

Potential energy of a system of particles,

60.

of strain, 105.

Pound, definition of, 7.

Power defined, 59.

developed by a torque, 59.

measurement of, 60.

Pressure, increase of, in passing across

the surface of a liquid, 124.

liquid pressure in a throat, 137.

(maximum) of a vapor, 178.

molecular, 125.

osmotic, 150.

and temperature of saturated aqueous

vapor (table), 178.

hydrostatic, defined, 87.

gauges 119.

in a fluid, III.

in a compressible fluid, 115.

of mixed gases, 188.

within a cylindrical film, 1 30.

within a soap bubble, 131.

necessary to condense certain vapors,

"5-

Principle of Pascal, no.

of Archimedes, 120.

Process, cyclic, 198.

sweeping, 200.

in thermodynamics, 197.

Processes, reversible, 199.

Projectiles, orbits of, in vacuo, 40.

in resisting media, 42.

Quantity, complex, 24.

distributed, 23.

physical, 17.

vector and scalar, 19.

constant and variable, 22.

Radiation, 217.

effect of, on performance of engines,

216.

Radius of gyration, 65.

Range of guns, 40.

Rational indices, law of, 145.

Refrigerating machines, 207.

Regnault's method for expansion of

liquids, 164.

Reversible engines, 208.

processes', 199.

Reversion pendulum, 75.

Rigid body, 68.

Rigidity, coefficient of, 91.

Rome de l'lsle's law, 144.

Rotary motion (simple harmonic), 67.

Rowland's determination of mechanical

equivalent of the erg, 168.

Saturated aqueous vapor, table of

pressures, 178.

Scalar products and quotients, 20.

Scalar quantities, 19.

Scale and vernier, I.

(centigrade) of temperature, 158.

Screw, micrometer, 3.

Second law of thermodynamics, 204.

Shear, angle of, 90.

Shearing strain, measure of, 90.

stress, 89.

Simple harmonic motion, 46.

motions, the superposition and resolu-

tion of, 50.

rotr.ry motion, 67.

Size of molecules, considered in case of

Boyle's law, 189.

Slide modulus, 91.

Soap bubble, pressure within, 131.

Solids, liquids, and gases, defined, 143.

Solutions, defined, 148.

Specific gravity scale, 12.
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Specific heat, 171.

the influence of temperatures upon,

173.

method of mixtures, 174.

Specific heats, table of, 172.

of gases, 194.

of gases and the two bulk moduli,

194.

of water, 174.

Spherometer, 4.

State (physical state of a gas), 197.

of thermal equilibrium, 198.

Statics, defined, 25.

Steam engines, 215.

cylinder condensation in, 216.

effect of piston velocity on efficiency

of, 216.

wire drawing in, 216.

Stokes' law, 132.

Strain, defined, 83.

ellipsoid, the, 84.

homogeneous, 84.

potential energy of, 105.

Stress, defined, 8^.

axes of, 85.

homogeneous, 85.

shearing, 89.

simple and compound, 92.

and strain, types, 87.

and strain, longitudinal, 92.

and strain, examples of, 97.

Stretch modulus, 92.

Stretched wire, case of a, 98.

Stretches of a strain, 83.

Substances, amorphous, 143.

homogeneous, 141.

Supersaturation, 148.

Surface tension and surface energy, 125.

Sweeping processes, 200.

Sweeps (equivalent), 213.

Symmetry of crystals, 146.

Systems (orthogonal) of crystallization,

146.

Table of boiling points, 181.

of critical temperatures, 183.

of density of mercury, 165.

Table of density of water, 166.

of heats of combustion, 176.

of heats of fusion, 181.

of heat of vaporization, 182.

of melting points, 177.

of pressure of saturated aqueous va-

por, 178.

of specific heat of water, 174.

of specific heats, 172.

of thermal conductivities, 218.

of vapor tensions of ammonia, 180.

Temperature, -absolute, 158.

critical (table), 183.

definition of equal, 154.

influence on elasticity, 104.

influence on specific heat, 173.

influence on heat of vaporization, 183.

mercury-in-glass, 159.

provisional definition of the ratio of,

156.

ratio of two (rigorous definition), 209.

rise of, during isentropic compression,

202.

standard, 156.

Tension, surface, 125.

Tetragonal system of crystallization, 146.

Thermal and chemical equilibrium, 214.

units, 168.

Thermodynamics, defined, 152.

first law of, 153.

second law of, 204.

the fundamental equation of, 215.

Thermometer, air, 157.

mercury, 158.

(mercury) standardization of, 160.

(mercury) calibration curve for, 162.

Thomson and Joule's experiment on the

efflux of a gas, 189.

Time, definition of, 14.

measurement of, 14.

Torque, 52.

relation to angular acceleration, 67.

work done by a, 59.

Torsion, constant of (or moment of), 102.

(measurement of torsion by pendu-

lum), 72.

pendulum, 70.



228 ELEMENTS OF PHYSICS.

Torsion pendulum, measurement of small

forces with the, 72.

pendulum, in determination of slide

modulus, 102.

Triclinic system of crystallization, 147.

Trimetric system of crystallization, 14.

Twisted wire, case of, 100.

Uniform motion in a circle, 45.

Units, C. G. S., 18.

dimensions of, 18.

fundamental and derived, 17.

secondary, 18.

thermal, 168.

of power, 59.

Van der Waals' equation, 189.

Vapor (maximum tension of), 178.

tension of ammonia (table), 180.

Vaporization, heat of (table), 182.

influence of temperature on heat of,

183.

Vector, definition of, 19.

algebra, 20.

products and quotients, 20.

quantities, 19.

Vectors, resolution of, 20.

polygon of, 20.

Velocity, angular, 55.

of gas molecules, 1 88.

of a particle, 26.

of sound (Newton's equation), 193.

Vena contracta, 137.

Venturi meters for water, 139.

Vernier, 1.

Vibration, 14.

Viscosity, 132.

Viscous fluid, flow of, through a long tube,

133-

between plates, case of, 132.

Volume, gravimetric methods for measur-

ing, n.

(molecular) of gases, 189.

Water, expansion curve and table, 166.

specific heat of, 174.

calorimeter, 169.

gauging, 139.

Water-meters, 139.

Watt's diagram, 197.

Weight, reduction to vacuo, 9.

relation of, to mass, 31.

Weights, 9.

errors of, 10.

Weighing by swings, 8.

Wiebe's comparison of air thermometer

and mercury thermometer, 1 59.

Wire drawing in the steam engine, 216.

Work and energy defined, 58.

done by a torque, 59.

gained and heat lost in Carnot's cycle

206.

Yard, definition of, I.

Young's modulus, 92.



LABORATORY MANUAL
OF

PHYSICS AND APPLIED ELECTRICITY.

ARRANGED AND EDITED BY

EDWARD I* NICHOLS,
Professor of Physics in Cornell University.

IN TWO VOLUMES.

VOL. I. CLOTH. $3.00. ,

JUNIOR COURSE IN GENERAL PHYSICS.

VOL* II. CLOTH. $3.25.

SENIOR COURSES AND OUTLINE OF ADVANCED WORK.

NOTICES.

The work as a whole cannot be too highly commended. Its brief outlines of the

various experiments are very satisfactory, its descriptions of apparatus are excellent,

its numerous suggestions are calculated to develop the thinking and reasoning powers

of the student. The diagrams are carefully prepared, and its frequent citations of

original sources of information are of the greatest value.— Street Railway Journal.

The work is clearly and concisely written ; the fact that it is edited by Professor

Nichols being a sufficient guarantee of merit.— Electrical Engineering.

It will be a great aid to students. The notes of experiments and problems reveal

much original work, and the book will be sure to commend itself to instructors. —
San Francisco Chronicle.

THE MACMILLAN COMPANY,
66 FIFTH AVENUE, NEW YORK.



A LABORATORY MANUAL

OF

EXPERIMENTAL PHYSICS.
BY

W. J. LOUDON and J. C. McLENNAN,

Demonstrators in Physics, University of Toronto.

Cloth. 8vo. pp. 302. $1.90 net.

FROM THE AUTHORS' PREFACE.

At the present day, when students are required to gain knowledge of natural phe>

nomena by performing experiments for themselves in laboratories, every teacher rinds

that as his classes increase in number, some difficulty is experienced in providing,

during a limited time, ample instruction in the matter of details and methods.

During the past few years we ourselves have had such difficulties with large classes;

and that is our reason for the appearance of the present work, which is the natural

outcome of our experience. We know that it will be of service to our own students,

and hope that it will be appreciated by those engaged in teaching Experimental

Physics elsewhere.

The book contains a series of elementary experiments specially adapted for stu-

dents who have had but little acquaintance with higher mathematical methods : these

are arranged, as far as possible, in order of difficulty. There is also an advanced

course of experimental work in Acoustics, Heat, and Electricity and Magnetism,

which is intended for those who have taken the elementary course.

The experiments in Acoustics are simple, and of such a nature that the most of

them can be performed by beginners in the study of Physics; those in Heat, although

not requiring more than an ordinary acquaintance with Arithmetic, are more tedious

and apt to test the patience of the experimenter; while the course in Electricity and

Magnetism has been arranged to illustrate the fundamental laws of the mathematical

theory, and involves a good working knowledge of the Calculus.
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